带有烷基链的苯是多价杀病毒剂的通用支架

IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Central Science Pub Date : 2024-04-04 DOI:10.1021/acscentsci.4c00054
Yong Zhu, Matteo Gasbarri, Soumaila Zebret, Sujeet Pawar, Gregory Mathez, Jacob Diderich, Alma Delia Valencia-Camargo, Doris Russenberger, Heyun Wang, Paulo Henrique Jacob Silva, Jay-ar B. Dela Cruz, Lixia Wei, Valeria Cagno, Christian Münz, Roberto F. Speck, Daniel Desmecht and Francesco Stellacci*, 
{"title":"带有烷基链的苯是多价杀病毒剂的通用支架","authors":"Yong Zhu,&nbsp;Matteo Gasbarri,&nbsp;Soumaila Zebret,&nbsp;Sujeet Pawar,&nbsp;Gregory Mathez,&nbsp;Jacob Diderich,&nbsp;Alma Delia Valencia-Camargo,&nbsp;Doris Russenberger,&nbsp;Heyun Wang,&nbsp;Paulo Henrique Jacob Silva,&nbsp;Jay-ar B. Dela Cruz,&nbsp;Lixia Wei,&nbsp;Valeria Cagno,&nbsp;Christian Münz,&nbsp;Roberto F. Speck,&nbsp;Daniel Desmecht and Francesco Stellacci*,&nbsp;","doi":"10.1021/acscentsci.4c00054","DOIUrl":null,"url":null,"abstract":"<p >Most viruses start their invasion by binding to glycoproteins’ moieties on the cell surface (heparan sulfate proteoglycans [HSPG] or sialic acid [SA]). Antivirals mimicking these moieties multivalently are known as broad-spectrum multivalent entry inhibitors (MEI). Due to their reversible mechanism, efficacy is lost when concentrations fall below an inhibitory threshold. To overcome this limitation, we modify MEIs with hydrophobic arms rendering the inhibitory mechanism irreversible, i.e., preventing the efficacy loss upon dilution. However, all our HSPG-mimicking MEIs only showed reversible inhibition against HSPG-binding SARS-CoV-2. Here, we present a systematic investigation of a series of small molecules, all containing a core and multiple hydrophobic arms terminated with HSPG-mimicking moieties. We identify the ones that have irreversible inhibition against all viruses including SARS-CoV-2 and discuss their design principles. We show efficacy <i>in vivo</i> against SARS-CoV-2 in a Syrian hamster model through both intranasal instillation and aerosol inhalation in a therapeutic setting (12 h postinfection). We also show the utility of the presented design rules in producing SA-mimicking MEIs with irreversible inhibition against SA-binding influenza viruses.</p><p >Multivalent sulfated benzene derivative inhibits viruses through a virucidal mechanism. It shows therapeutic efficacy <i>in vivo</i> against SARS-CoV-2 when administered intranasally 12 h postinfection.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":null,"pages":null},"PeriodicalIF":12.7000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c00054","citationCount":"0","resultStr":"{\"title\":\"Benzene with Alkyl Chains Is a Universal Scaffold for Multivalent Virucidal Antivirals\",\"authors\":\"Yong Zhu,&nbsp;Matteo Gasbarri,&nbsp;Soumaila Zebret,&nbsp;Sujeet Pawar,&nbsp;Gregory Mathez,&nbsp;Jacob Diderich,&nbsp;Alma Delia Valencia-Camargo,&nbsp;Doris Russenberger,&nbsp;Heyun Wang,&nbsp;Paulo Henrique Jacob Silva,&nbsp;Jay-ar B. Dela Cruz,&nbsp;Lixia Wei,&nbsp;Valeria Cagno,&nbsp;Christian Münz,&nbsp;Roberto F. Speck,&nbsp;Daniel Desmecht and Francesco Stellacci*,&nbsp;\",\"doi\":\"10.1021/acscentsci.4c00054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Most viruses start their invasion by binding to glycoproteins’ moieties on the cell surface (heparan sulfate proteoglycans [HSPG] or sialic acid [SA]). Antivirals mimicking these moieties multivalently are known as broad-spectrum multivalent entry inhibitors (MEI). Due to their reversible mechanism, efficacy is lost when concentrations fall below an inhibitory threshold. To overcome this limitation, we modify MEIs with hydrophobic arms rendering the inhibitory mechanism irreversible, i.e., preventing the efficacy loss upon dilution. However, all our HSPG-mimicking MEIs only showed reversible inhibition against HSPG-binding SARS-CoV-2. Here, we present a systematic investigation of a series of small molecules, all containing a core and multiple hydrophobic arms terminated with HSPG-mimicking moieties. We identify the ones that have irreversible inhibition against all viruses including SARS-CoV-2 and discuss their design principles. We show efficacy <i>in vivo</i> against SARS-CoV-2 in a Syrian hamster model through both intranasal instillation and aerosol inhalation in a therapeutic setting (12 h postinfection). We also show the utility of the presented design rules in producing SA-mimicking MEIs with irreversible inhibition against SA-binding influenza viruses.</p><p >Multivalent sulfated benzene derivative inhibits viruses through a virucidal mechanism. It shows therapeutic efficacy <i>in vivo</i> against SARS-CoV-2 when administered intranasally 12 h postinfection.</p>\",\"PeriodicalId\":10,\"journal\":{\"name\":\"ACS Central Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c00054\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Central Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscentsci.4c00054\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscentsci.4c00054","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

大多数病毒通过与细胞表面的糖蛋白分子(硫酸肝素蛋白多糖 [HSPG] 或硅铝酸 [SA])结合开始入侵。多价模拟这些分子的抗病毒药物被称为广谱多价入口抑制剂(MEI)。由于其可逆机制,当浓度低于抑制阈值时,药效就会丧失。为了克服这一局限性,我们用疏水臂修饰多价入口抑制剂,使其抑制机制不可逆,即防止稀释后药效丧失。然而,我们所有的 HSPG 拟态 MEIs 只对与 HSPG 结合的 SARS-CoV-2 有可逆的抑制作用。在此,我们对一系列小分子进行了系统研究,这些小分子都含有一个核心和多个以 HSPG 模拟分子为末端的疏水臂。我们找出了对包括 SARS-CoV-2 在内的所有病毒都有不可逆抑制作用的小分子,并讨论了它们的设计原理。我们在叙利亚仓鼠模型中展示了通过鼻内灌注和气溶胶吸入治疗(感染后 12 小时)对 SARS-CoV-2 的体内疗效。我们还展示了所介绍的设计规则在生产具有对 SA 结合型流感病毒不可逆抑制作用的 SA 模仿 MEIs 方面的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Benzene with Alkyl Chains Is a Universal Scaffold for Multivalent Virucidal Antivirals

Most viruses start their invasion by binding to glycoproteins’ moieties on the cell surface (heparan sulfate proteoglycans [HSPG] or sialic acid [SA]). Antivirals mimicking these moieties multivalently are known as broad-spectrum multivalent entry inhibitors (MEI). Due to their reversible mechanism, efficacy is lost when concentrations fall below an inhibitory threshold. To overcome this limitation, we modify MEIs with hydrophobic arms rendering the inhibitory mechanism irreversible, i.e., preventing the efficacy loss upon dilution. However, all our HSPG-mimicking MEIs only showed reversible inhibition against HSPG-binding SARS-CoV-2. Here, we present a systematic investigation of a series of small molecules, all containing a core and multiple hydrophobic arms terminated with HSPG-mimicking moieties. We identify the ones that have irreversible inhibition against all viruses including SARS-CoV-2 and discuss their design principles. We show efficacy in vivo against SARS-CoV-2 in a Syrian hamster model through both intranasal instillation and aerosol inhalation in a therapeutic setting (12 h postinfection). We also show the utility of the presented design rules in producing SA-mimicking MEIs with irreversible inhibition against SA-binding influenza viruses.

Multivalent sulfated benzene derivative inhibits viruses through a virucidal mechanism. It shows therapeutic efficacy in vivo against SARS-CoV-2 when administered intranasally 12 h postinfection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Central Science
ACS Central Science Chemical Engineering-General Chemical Engineering
CiteScore
25.50
自引率
0.50%
发文量
194
审稿时长
10 weeks
期刊介绍: ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.
期刊最新文献
Spatial Visualization of A-to-I Editing in Cells Using Endonuclease V Immunostaining Assay (EndoVIA) Cryo-tomography and 3D Electron Diffraction Reveal the Polar Habit and Chiral Structure of the Malaria Pigment Crystal Hemozoin A Novel Prodrug Strategy Based on Reversibly Degradable Guanidine Imides for High Oral Bioavailability and Prolonged Pharmacokinetics of Broad-Spectrum Anti-influenza Agents Correction to “A Multiscale Study of Phosphorylcholine Driven Cellular Phenotypic Targeting” A Conversation with Rob Jackson
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1