{"title":"利用定量多参数磁共振成像的合成脑成像检测病理对比度增强","authors":"Graziella Donatelli, Gianmichele Migaleddu, Matteo Cencini, Paolo Cecchi, Claudio D'Amelio, Luca Peretti, Guido Buonincontri, Michela Tosetti, Mauro Costagli, Mirco Cosottini","doi":"10.1111/jon.13201","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background and Purpose</h3>\n \n <p>We aimed to test whether synthetic T1-weighted imaging derived from a post-contrast Quantitative Transient-state Imaging (QTI) acquisition enabled revealing pathological contrast enhancement in intracranial lesions.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>The analysis included 141 patients who underwent a 3 Tesla-MRI brain exam with intravenous contrast media administration, with the post-contrast acquisition protocol comprising a three-dimensional fast spoiled gradient echo (FSPGR) sequence and a QTI acquisition. Synthetic T1-weighted images were generated from QTI-derived quantitative maps of relaxation times and proton density. Two neuroradiologists assessed synthetic and conventional post-contrast T1-weighted images for the presence and pattern of pathological contrast enhancement in intracranial lesions. Enhancement volumes were quantitatively compared.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Using conventional imaging as a reference, synthetic T1-weighted imaging was 93% sensitive in revealing the presence of contrast enhancing lesions. The agreement for the presence/absence of contrast enhancement was almost perfect both between readers (k = 1 for both conventional and synthetic imaging) and between sequences (k = 0.98 for both readers). In 91% of lesions, synthetic T1-weighted imaging showed the same pattern of contrast enhancement visible in conventional imaging. Differences in enhancement pattern in the remaining lesions can be due to the lower spatial resolution and the longer acquisition delay from contrast media administration of QTI compared to FSPGR. Overall, enhancement volumes appeared larger in synthetic imaging.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>QTI-derived post-contrast synthetic T1-weighted imaging captures pathological contrast enhancement in most intracranial enhancing lesions. Further comparative studies employing quantitative imaging with higher spatial resolution is needed to support our data and explore possible future applications in clinical trials.</p>\n </section>\n </div>","PeriodicalId":16399,"journal":{"name":"Journal of Neuroimaging","volume":"34 4","pages":"475-485"},"PeriodicalIF":2.3000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jon.13201","citationCount":"0","resultStr":"{\"title\":\"Detection of pathological contrast enhancement with synthetic brain imaging from quantitative multiparametric MRI\",\"authors\":\"Graziella Donatelli, Gianmichele Migaleddu, Matteo Cencini, Paolo Cecchi, Claudio D'Amelio, Luca Peretti, Guido Buonincontri, Michela Tosetti, Mauro Costagli, Mirco Cosottini\",\"doi\":\"10.1111/jon.13201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background and Purpose</h3>\\n \\n <p>We aimed to test whether synthetic T1-weighted imaging derived from a post-contrast Quantitative Transient-state Imaging (QTI) acquisition enabled revealing pathological contrast enhancement in intracranial lesions.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>The analysis included 141 patients who underwent a 3 Tesla-MRI brain exam with intravenous contrast media administration, with the post-contrast acquisition protocol comprising a three-dimensional fast spoiled gradient echo (FSPGR) sequence and a QTI acquisition. Synthetic T1-weighted images were generated from QTI-derived quantitative maps of relaxation times and proton density. Two neuroradiologists assessed synthetic and conventional post-contrast T1-weighted images for the presence and pattern of pathological contrast enhancement in intracranial lesions. Enhancement volumes were quantitatively compared.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Using conventional imaging as a reference, synthetic T1-weighted imaging was 93% sensitive in revealing the presence of contrast enhancing lesions. The agreement for the presence/absence of contrast enhancement was almost perfect both between readers (k = 1 for both conventional and synthetic imaging) and between sequences (k = 0.98 for both readers). In 91% of lesions, synthetic T1-weighted imaging showed the same pattern of contrast enhancement visible in conventional imaging. Differences in enhancement pattern in the remaining lesions can be due to the lower spatial resolution and the longer acquisition delay from contrast media administration of QTI compared to FSPGR. Overall, enhancement volumes appeared larger in synthetic imaging.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>QTI-derived post-contrast synthetic T1-weighted imaging captures pathological contrast enhancement in most intracranial enhancing lesions. Further comparative studies employing quantitative imaging with higher spatial resolution is needed to support our data and explore possible future applications in clinical trials.</p>\\n </section>\\n </div>\",\"PeriodicalId\":16399,\"journal\":{\"name\":\"Journal of Neuroimaging\",\"volume\":\"34 4\",\"pages\":\"475-485\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jon.13201\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroimaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jon.13201\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroimaging","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jon.13201","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Detection of pathological contrast enhancement with synthetic brain imaging from quantitative multiparametric MRI
Background and Purpose
We aimed to test whether synthetic T1-weighted imaging derived from a post-contrast Quantitative Transient-state Imaging (QTI) acquisition enabled revealing pathological contrast enhancement in intracranial lesions.
Methods
The analysis included 141 patients who underwent a 3 Tesla-MRI brain exam with intravenous contrast media administration, with the post-contrast acquisition protocol comprising a three-dimensional fast spoiled gradient echo (FSPGR) sequence and a QTI acquisition. Synthetic T1-weighted images were generated from QTI-derived quantitative maps of relaxation times and proton density. Two neuroradiologists assessed synthetic and conventional post-contrast T1-weighted images for the presence and pattern of pathological contrast enhancement in intracranial lesions. Enhancement volumes were quantitatively compared.
Results
Using conventional imaging as a reference, synthetic T1-weighted imaging was 93% sensitive in revealing the presence of contrast enhancing lesions. The agreement for the presence/absence of contrast enhancement was almost perfect both between readers (k = 1 for both conventional and synthetic imaging) and between sequences (k = 0.98 for both readers). In 91% of lesions, synthetic T1-weighted imaging showed the same pattern of contrast enhancement visible in conventional imaging. Differences in enhancement pattern in the remaining lesions can be due to the lower spatial resolution and the longer acquisition delay from contrast media administration of QTI compared to FSPGR. Overall, enhancement volumes appeared larger in synthetic imaging.
Conclusions
QTI-derived post-contrast synthetic T1-weighted imaging captures pathological contrast enhancement in most intracranial enhancing lesions. Further comparative studies employing quantitative imaging with higher spatial resolution is needed to support our data and explore possible future applications in clinical trials.
期刊介绍:
Start reading the Journal of Neuroimaging to learn the latest neurological imaging techniques. The peer-reviewed research is written in a practical clinical context, giving you the information you need on:
MRI
CT
Carotid Ultrasound and TCD
SPECT
PET
Endovascular Surgical Neuroradiology
Functional MRI
Xenon CT
and other new and upcoming neuroscientific modalities.The Journal of Neuroimaging addresses the full spectrum of human nervous system disease, including stroke, neoplasia, degenerating and demyelinating disease, epilepsy, tumors, lesions, infectious disease, cerebral vascular arterial diseases, toxic-metabolic disease, psychoses, dementias, heredo-familial disease, and trauma.Offering original research, review articles, case reports, neuroimaging CPCs, and evaluations of instruments and technology relevant to the nervous system, the Journal of Neuroimaging focuses on useful clinical developments and applications, tested techniques and interpretations, patient care, diagnostics, and therapeutics. Start reading today!