Xiaojin Zhang, Lixin Fan, Siwei Wang, Wenjie Li, Kai Chen, Qiang Yang
{"title":"保护隐私的联盟学习博弈论框架","authors":"Xiaojin Zhang, Lixin Fan, Siwei Wang, Wenjie Li, Kai Chen, Qiang Yang","doi":"10.1145/3656049","DOIUrl":null,"url":null,"abstract":"<p>In federated learning, benign participants aim to optimize a global model collaboratively. However, the risk of <i>privacy leakage</i> cannot be ignored in the presence of <i>semi-honest</i> adversaries. Existing research has focused either on designing protection mechanisms or on inventing attacking mechanisms. While the battle between defenders and attackers seems never-ending, we are concerned with one critical question: is it possible to prevent potential attacks in advance? To address this, we propose the first game-theoretic framework that considers both FL defenders and attackers in terms of their respective payoffs, which include computational costs, FL model utilities, and privacy leakage risks. We name this game the federated learning privacy game (FLPG), in which neither defenders nor attackers are aware of all participants’ payoffs. To handle the <i>incomplete information</i> inherent in this situation, we propose associating the FLPG with an <i>oracle</i> that has two primary responsibilities. First, the oracle provides lower and upper bounds of the payoffs for the players. Second, the oracle acts as a correlation device, privately providing suggested actions to each player. With this novel framework, we analyze the optimal strategies of defenders and attackers. Furthermore, we derive and demonstrate conditions under which the attacker, as a rational decision-maker, should always follow the oracle’s suggestion <i>not to attack</i>.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Game-theoretic Framework for Privacy-preserving Federated Learning\",\"authors\":\"Xiaojin Zhang, Lixin Fan, Siwei Wang, Wenjie Li, Kai Chen, Qiang Yang\",\"doi\":\"10.1145/3656049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In federated learning, benign participants aim to optimize a global model collaboratively. However, the risk of <i>privacy leakage</i> cannot be ignored in the presence of <i>semi-honest</i> adversaries. Existing research has focused either on designing protection mechanisms or on inventing attacking mechanisms. While the battle between defenders and attackers seems never-ending, we are concerned with one critical question: is it possible to prevent potential attacks in advance? To address this, we propose the first game-theoretic framework that considers both FL defenders and attackers in terms of their respective payoffs, which include computational costs, FL model utilities, and privacy leakage risks. We name this game the federated learning privacy game (FLPG), in which neither defenders nor attackers are aware of all participants’ payoffs. To handle the <i>incomplete information</i> inherent in this situation, we propose associating the FLPG with an <i>oracle</i> that has two primary responsibilities. First, the oracle provides lower and upper bounds of the payoffs for the players. Second, the oracle acts as a correlation device, privately providing suggested actions to each player. With this novel framework, we analyze the optimal strategies of defenders and attackers. Furthermore, we derive and demonstrate conditions under which the attacker, as a rational decision-maker, should always follow the oracle’s suggestion <i>not to attack</i>.</p>\",\"PeriodicalId\":48967,\"journal\":{\"name\":\"ACM Transactions on Intelligent Systems and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Intelligent Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3656049\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3656049","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Game-theoretic Framework for Privacy-preserving Federated Learning
In federated learning, benign participants aim to optimize a global model collaboratively. However, the risk of privacy leakage cannot be ignored in the presence of semi-honest adversaries. Existing research has focused either on designing protection mechanisms or on inventing attacking mechanisms. While the battle between defenders and attackers seems never-ending, we are concerned with one critical question: is it possible to prevent potential attacks in advance? To address this, we propose the first game-theoretic framework that considers both FL defenders and attackers in terms of their respective payoffs, which include computational costs, FL model utilities, and privacy leakage risks. We name this game the federated learning privacy game (FLPG), in which neither defenders nor attackers are aware of all participants’ payoffs. To handle the incomplete information inherent in this situation, we propose associating the FLPG with an oracle that has two primary responsibilities. First, the oracle provides lower and upper bounds of the payoffs for the players. Second, the oracle acts as a correlation device, privately providing suggested actions to each player. With this novel framework, we analyze the optimal strategies of defenders and attackers. Furthermore, we derive and demonstrate conditions under which the attacker, as a rational decision-maker, should always follow the oracle’s suggestion not to attack.
期刊介绍:
ACM Transactions on Intelligent Systems and Technology is a scholarly journal that publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a component of a larger system) to allow integrated systems to perceive, reason, learn, and act intelligently in the real world.
ACM TIST is published quarterly (six issues a year). Each issue has 8-11 regular papers, with around 20 published journal pages or 10,000 words per paper. Additional references, proofs, graphs or detailed experiment results can be submitted as a separate appendix, while excessively lengthy papers will be rejected automatically. Authors can include online-only appendices for additional content of their published papers and are encouraged to share their code and/or data with other readers.