Veridiane M. Pscheidt, Priscila Oliveira de Souza, Tiago Fazolo, José Luiz Proença Modena, Camila Simeoni, Daniel Teixeira, Natália Brunetti Silva, Karina Bispo dos Santos, Luiz Rodrigues Júnior, Cristina Bonorino
{"title":"基于流式细胞术的测定法,用于测量针对 SARS-CoV-2 病毒的中和抗体","authors":"Veridiane M. Pscheidt, Priscila Oliveira de Souza, Tiago Fazolo, José Luiz Proença Modena, Camila Simeoni, Daniel Teixeira, Natália Brunetti Silva, Karina Bispo dos Santos, Luiz Rodrigues Júnior, Cristina Bonorino","doi":"10.1002/cyto.a.24838","DOIUrl":null,"url":null,"abstract":"<p>The COVID-19 pandemic caused by the SARS-CoV-2 virus has highlighted the need for serological assays that can accurately evaluate the neutralizing efficiency of antibodies produced during infection or induced by vaccines. However, conventional assays often require the manipulation of live viruses on a level-three biosafety (BSL3) facility, which presents practical and safety challenges. Here, we present a novel, alternative assay that measures neutralizing antibodies (NAbs) against SARS-CoV-2 in plasma using flow cytometry. This assay is based on antibody binding to the S protein and has demonstrated precision in both intra- and inter-assay measurements at a dilution of 1:50. The cut-off was determined using Receiver Operating Characteristic (ROC) analysis and the value of 36.01% has shown high sensitivity and specificity in distinguishing between pre-pandemic sera, COVID-19 patients, and vaccinated individuals. The efficiency significantly correlates with the gold standard test, PRNT. Our new assay offers a safe and efficient alternative to conventional assays for evaluating NAbs against SARS-CoV-2.</p>","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":"105 6","pages":"446-457"},"PeriodicalIF":2.5000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A flow cytometry-based assay to measure neutralizing antibodies against SARS-CoV-2 virus\",\"authors\":\"Veridiane M. Pscheidt, Priscila Oliveira de Souza, Tiago Fazolo, José Luiz Proença Modena, Camila Simeoni, Daniel Teixeira, Natália Brunetti Silva, Karina Bispo dos Santos, Luiz Rodrigues Júnior, Cristina Bonorino\",\"doi\":\"10.1002/cyto.a.24838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The COVID-19 pandemic caused by the SARS-CoV-2 virus has highlighted the need for serological assays that can accurately evaluate the neutralizing efficiency of antibodies produced during infection or induced by vaccines. However, conventional assays often require the manipulation of live viruses on a level-three biosafety (BSL3) facility, which presents practical and safety challenges. Here, we present a novel, alternative assay that measures neutralizing antibodies (NAbs) against SARS-CoV-2 in plasma using flow cytometry. This assay is based on antibody binding to the S protein and has demonstrated precision in both intra- and inter-assay measurements at a dilution of 1:50. The cut-off was determined using Receiver Operating Characteristic (ROC) analysis and the value of 36.01% has shown high sensitivity and specificity in distinguishing between pre-pandemic sera, COVID-19 patients, and vaccinated individuals. The efficiency significantly correlates with the gold standard test, PRNT. Our new assay offers a safe and efficient alternative to conventional assays for evaluating NAbs against SARS-CoV-2.</p>\",\"PeriodicalId\":11068,\"journal\":{\"name\":\"Cytometry Part A\",\"volume\":\"105 6\",\"pages\":\"446-457\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytometry Part A\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.24838\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytometry Part A","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.24838","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A flow cytometry-based assay to measure neutralizing antibodies against SARS-CoV-2 virus
The COVID-19 pandemic caused by the SARS-CoV-2 virus has highlighted the need for serological assays that can accurately evaluate the neutralizing efficiency of antibodies produced during infection or induced by vaccines. However, conventional assays often require the manipulation of live viruses on a level-three biosafety (BSL3) facility, which presents practical and safety challenges. Here, we present a novel, alternative assay that measures neutralizing antibodies (NAbs) against SARS-CoV-2 in plasma using flow cytometry. This assay is based on antibody binding to the S protein and has demonstrated precision in both intra- and inter-assay measurements at a dilution of 1:50. The cut-off was determined using Receiver Operating Characteristic (ROC) analysis and the value of 36.01% has shown high sensitivity and specificity in distinguishing between pre-pandemic sera, COVID-19 patients, and vaccinated individuals. The efficiency significantly correlates with the gold standard test, PRNT. Our new assay offers a safe and efficient alternative to conventional assays for evaluating NAbs against SARS-CoV-2.
期刊介绍:
Cytometry Part A, the journal of quantitative single-cell analysis, features original research reports and reviews of innovative scientific studies employing quantitative single-cell measurement, separation, manipulation, and modeling techniques, as well as original articles on mechanisms of molecular and cellular functions obtained by cytometry techniques.
The journal welcomes submissions from multiple research fields that fully embrace the study of the cytome:
Biomedical Instrumentation Engineering
Biophotonics
Bioinformatics
Cell Biology
Computational Biology
Data Science
Immunology
Parasitology
Microbiology
Neuroscience
Cancer
Stem Cells
Tissue Regeneration.