用于肾上腺/乳腺癌检测的等离子腔中多个法诺共振的 Levenberg-Marquardt 验证

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Nanotechnology Pub Date : 2024-04-08 DOI:10.1109/TNANO.2024.3385854
Sajjan Kumar Jha;Gaurav Varshney;Rabindra Kumar
{"title":"用于肾上腺/乳腺癌检测的等离子腔中多个法诺共振的 Levenberg-Marquardt 验证","authors":"Sajjan Kumar Jha;Gaurav Varshney;Rabindra Kumar","doi":"10.1109/TNANO.2024.3385854","DOIUrl":null,"url":null,"abstract":"A technique of slanting MIM plasmonic waveguide-based cavity is numerically studied and implemented. Initially, the proposed rectangular cavity is proficient for generating five Breit-Wigner and six Fano resonances. The polygonal cavity is designed out of rectangular cavity by slanting one of its edge that reshaped the Breit-Wigner resonances into Fano profile with remaining resonances unaffected. The polygonal cavity obtains total eleven Fano resonances by coupling with an inclined split waveguide. The influence of slanting on reshaping of resonances is studied with orthogonality of modes and overlap integration has been calculated. The Fano resonances in the transmittance spectrum are individually validated with Fano profile formula and the corresponding Fano shape parameter are computed. The validation is done with the help of Levenberg-Marquardt algorithm and the goodness of fits are calculated. The best performance parameters of Fano resonances are expressed as operating wavelength \n<inline-formula><tex-math>${\\bm{\\lambda }}\\ = \\ 450 - 1800\\ {\\text{nm}}$</tex-math></inline-formula>\n, sensitivity \n<inline-formula><tex-math>$( {\\bm{S}} )\\ = \\ 1643\\ {\\text{nm}}/{\\rm{RIU}}$</tex-math></inline-formula>\n, full-width, half maxima \n<inline-formula><tex-math>$( {{\\bm{FWHM}}} )\\ = \\ 0.76\\ {\\text{nm}}$</tex-math></inline-formula>\n, quality factor (\n<inline-formula><tex-math>${\\bm{Q}})\\ = \\ 743.77$</tex-math></inline-formula>\n and figure of merit \n<inline-formula><tex-math>$( {{\\bm{FOM}}} )\\ = \\ 738.69\\ {\\rm{RIU}}^{ - 1}$</tex-math></inline-formula>\n. The proposed device is further studied for the detection of certain cancer types including Adrenal cancer, Breast Type1 cancer and Breast Type2 cancer. The maximum sensitivity in case of detection of all the three cancer types yielded out to be \n<inline-formula><tex-math>${\\bm{S}}\\ = \\ 1642.857\\ {\\text{nm}}/{\\rm{RIU}}$</tex-math></inline-formula>\n. The other sensing performance parameter called figure of merit is calculated to be \n<inline-formula><tex-math>${\\bm{FOM}}\\ = \\ 610.90\\ {\\rm{RI}}{{{\\rm{U}}}^{ - 1}}$</tex-math></inline-formula>\n for Adrenal and Breast Type 1 and \n<inline-formula><tex-math>${\\bm{FOM}}\\ = \\ 671.99\\ {\\rm{RI}}{{{\\rm{U}}}^{ - 1}}$</tex-math></inline-formula>\n for Breast Type 2 cancers.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"352-360"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Levenberg-Marquardt Validation of Multiple Fano Resonances in Plasmonic Cavity for Adrenal/Breast Cancer Detection\",\"authors\":\"Sajjan Kumar Jha;Gaurav Varshney;Rabindra Kumar\",\"doi\":\"10.1109/TNANO.2024.3385854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A technique of slanting MIM plasmonic waveguide-based cavity is numerically studied and implemented. Initially, the proposed rectangular cavity is proficient for generating five Breit-Wigner and six Fano resonances. The polygonal cavity is designed out of rectangular cavity by slanting one of its edge that reshaped the Breit-Wigner resonances into Fano profile with remaining resonances unaffected. The polygonal cavity obtains total eleven Fano resonances by coupling with an inclined split waveguide. The influence of slanting on reshaping of resonances is studied with orthogonality of modes and overlap integration has been calculated. The Fano resonances in the transmittance spectrum are individually validated with Fano profile formula and the corresponding Fano shape parameter are computed. The validation is done with the help of Levenberg-Marquardt algorithm and the goodness of fits are calculated. The best performance parameters of Fano resonances are expressed as operating wavelength \\n<inline-formula><tex-math>${\\\\bm{\\\\lambda }}\\\\ = \\\\ 450 - 1800\\\\ {\\\\text{nm}}$</tex-math></inline-formula>\\n, sensitivity \\n<inline-formula><tex-math>$( {\\\\bm{S}} )\\\\ = \\\\ 1643\\\\ {\\\\text{nm}}/{\\\\rm{RIU}}$</tex-math></inline-formula>\\n, full-width, half maxima \\n<inline-formula><tex-math>$( {{\\\\bm{FWHM}}} )\\\\ = \\\\ 0.76\\\\ {\\\\text{nm}}$</tex-math></inline-formula>\\n, quality factor (\\n<inline-formula><tex-math>${\\\\bm{Q}})\\\\ = \\\\ 743.77$</tex-math></inline-formula>\\n and figure of merit \\n<inline-formula><tex-math>$( {{\\\\bm{FOM}}} )\\\\ = \\\\ 738.69\\\\ {\\\\rm{RIU}}^{ - 1}$</tex-math></inline-formula>\\n. The proposed device is further studied for the detection of certain cancer types including Adrenal cancer, Breast Type1 cancer and Breast Type2 cancer. The maximum sensitivity in case of detection of all the three cancer types yielded out to be \\n<inline-formula><tex-math>${\\\\bm{S}}\\\\ = \\\\ 1642.857\\\\ {\\\\text{nm}}/{\\\\rm{RIU}}$</tex-math></inline-formula>\\n. The other sensing performance parameter called figure of merit is calculated to be \\n<inline-formula><tex-math>${\\\\bm{FOM}}\\\\ = \\\\ 610.90\\\\ {\\\\rm{RI}}{{{\\\\rm{U}}}^{ - 1}}$</tex-math></inline-formula>\\n for Adrenal and Breast Type 1 and \\n<inline-formula><tex-math>${\\\\bm{FOM}}\\\\ = \\\\ 671.99\\\\ {\\\\rm{RI}}{{{\\\\rm{U}}}^{ - 1}}$</tex-math></inline-formula>\\n for Breast Type 2 cancers.\",\"PeriodicalId\":449,\"journal\":{\"name\":\"IEEE Transactions on Nanotechnology\",\"volume\":\"23 \",\"pages\":\"352-360\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10494565/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10494565/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

对基于斜 MIM 质子波导的腔体技术进行了数值研究和实现。最初,提出的矩形腔能产生五个布雷特-维格纳共振和六个法诺共振。多边形腔体是在矩形腔体的基础上设计的,通过倾斜其一个边缘,将布雷特-维格纳共振重塑为法诺共振,而其余共振不受影响。通过与倾斜分裂波导耦合,多边形腔体共获得 11 个法诺共振。研究了斜面对共振重塑的影响,并计算了模式的正交性和重叠积分。利用法诺轮廓公式对透射光谱中的法诺共振进行了单独验证,并计算了相应的法诺形状参数。借助 Levenberg-Marquardt 算法进行验证,并计算拟合优度。法诺共振的最佳性能参数表示为工作波长 ${\bm{lambda }}\ = \ 450 - 1800\ {text{nm}}$, 灵敏度 $( {\bm{S}} )\ = \ 1643\ {text{nm}}/{\rm{RIU}}$, 全宽半最大值 $( {{\bm{FWHM}}} )\ = \ 0.76 ({{text\{nm}}}$),品质因数(${\bm{Q}}) = (743.77),优点系数$({{\bm{FOM}}} ) = (738.69)({{rm{RIU}}^{ - 1}$)。我们进一步研究了所提出的设备对某些癌症类型的检测,包括肾上腺癌、乳腺癌 1 型和乳腺癌 2 型。检测所有三种癌症类型的最大灵敏度为 ${\bm{S}}\ = \ 1642.857\ {\text{nm}}/{\rm{RIU}}$ 。经计算,肾上腺癌和乳腺癌1型的另一个传感性能参数为${/bm{FOM}}\ = \ 610.90\ {\rm{RI}}{{{rm{U}}^{ - 1}}$,乳腺癌2型的传感性能参数为${/bm{FOM}}\ = \ 671.99\ {\rm{RI}}{{{rm{U}}^{ - 1}}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Levenberg-Marquardt Validation of Multiple Fano Resonances in Plasmonic Cavity for Adrenal/Breast Cancer Detection
A technique of slanting MIM plasmonic waveguide-based cavity is numerically studied and implemented. Initially, the proposed rectangular cavity is proficient for generating five Breit-Wigner and six Fano resonances. The polygonal cavity is designed out of rectangular cavity by slanting one of its edge that reshaped the Breit-Wigner resonances into Fano profile with remaining resonances unaffected. The polygonal cavity obtains total eleven Fano resonances by coupling with an inclined split waveguide. The influence of slanting on reshaping of resonances is studied with orthogonality of modes and overlap integration has been calculated. The Fano resonances in the transmittance spectrum are individually validated with Fano profile formula and the corresponding Fano shape parameter are computed. The validation is done with the help of Levenberg-Marquardt algorithm and the goodness of fits are calculated. The best performance parameters of Fano resonances are expressed as operating wavelength ${\bm{\lambda }}\ = \ 450 - 1800\ {\text{nm}}$ , sensitivity $( {\bm{S}} )\ = \ 1643\ {\text{nm}}/{\rm{RIU}}$ , full-width, half maxima $( {{\bm{FWHM}}} )\ = \ 0.76\ {\text{nm}}$ , quality factor ( ${\bm{Q}})\ = \ 743.77$ and figure of merit $( {{\bm{FOM}}} )\ = \ 738.69\ {\rm{RIU}}^{ - 1}$ . The proposed device is further studied for the detection of certain cancer types including Adrenal cancer, Breast Type1 cancer and Breast Type2 cancer. The maximum sensitivity in case of detection of all the three cancer types yielded out to be ${\bm{S}}\ = \ 1642.857\ {\text{nm}}/{\rm{RIU}}$ . The other sensing performance parameter called figure of merit is calculated to be ${\bm{FOM}}\ = \ 610.90\ {\rm{RI}}{{{\rm{U}}}^{ - 1}}$ for Adrenal and Breast Type 1 and ${\bm{FOM}}\ = \ 671.99\ {\rm{RI}}{{{\rm{U}}}^{ - 1}}$ for Breast Type 2 cancers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
期刊最新文献
High-Speed and Area-Efficient Serial IMPLY-Based Approximate Subtractor and Comparator for Image Processing and Neural Networks Design of a Graphene Based Terahertz Perfect Metamaterial Absorber With Multiple Sensing Performance Modeling and Simulation of Correlated Cycle-to- Cycle Variability in the Current-Voltage Hysteresis Loops of RRAM Devices Impact of Electron and Hole Trap Profiles in BE-TOX on Retention Characteristics of 3D NAND Flash Memory Full 3-D Monte Carlo Simulation of Coupled Electron-Phonon Transport: Self-Heating in a Nanoscale FinFET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1