Sung Ho Hwang, Gi Taek Oh, Jeung Yeon Park, Kiyoung Lee, Kyung-Duk Zho, Chungsik Yoon
{"title":"推进剂和触发式消费喷雾产品中邻苯二甲酸酯浓度的特点","authors":"Sung Ho Hwang, Gi Taek Oh, Jeung Yeon Park, Kiyoung Lee, Kyung-Duk Zho, Chungsik Yoon","doi":"10.1007/s11869-024-01560-z","DOIUrl":null,"url":null,"abstract":"<div><p>The purposes of this study were to evaluate the bulk sample concentration and airborne concentrations of phthalate in different types of propellent and triggers in consumer spray products and estimate health risk assessment via inhalation. First, the phthalate concentrations were analyzed in the solutions of all products 174 from markets. Then, among 64 products containing phthalates, 10 propellant-type products were selected that contained high phthalate concentrations; airborne concentrations were measured at distances of 1, 3, and 5 m from the spray nozzle in a clean room. Four phthalates were detected in spray products: diisobutyl phthalate (DiBP), di-n-butyl phthalate (DnBP), butyl benzyl phthalate (BBzP), and bis(2-ethylhexyl) phthalate (DEHP). Among propellant-type products, repellents contained the highest mean concentrations (3.90 ppm), whereas sterilized products contained the lowest mean concentrations (0.59 ppm). Among trigger-type products, cleaning products contained the highest mean concentrations (4.54 ppm), whereas coating products contained the lowest mean concentrations (0.73 ppm). In both propellant- and trigger-type products, DnBP and DEHP exceeded the standard set by the Ministry of Food and Drug Safety of South Korea. No significant patterns were observed for the airborne DiBP, DnBP, and DEHP concentrations at 1, 3, and 5 m (p > 0.05). Children were one of the population groups most susceptible to health risks. Overall, phthalates were detected in both product solutions and the air in consumer spray products; some even exceeded safe limits. Therefore, consumer spray products should be used in well-ventilated areas to avoid respiratory exposure.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11869-024-01560-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Characteristics of phthalate concentrations in propellant- and trigger-type consumer spray products\",\"authors\":\"Sung Ho Hwang, Gi Taek Oh, Jeung Yeon Park, Kiyoung Lee, Kyung-Duk Zho, Chungsik Yoon\",\"doi\":\"10.1007/s11869-024-01560-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The purposes of this study were to evaluate the bulk sample concentration and airborne concentrations of phthalate in different types of propellent and triggers in consumer spray products and estimate health risk assessment via inhalation. First, the phthalate concentrations were analyzed in the solutions of all products 174 from markets. Then, among 64 products containing phthalates, 10 propellant-type products were selected that contained high phthalate concentrations; airborne concentrations were measured at distances of 1, 3, and 5 m from the spray nozzle in a clean room. Four phthalates were detected in spray products: diisobutyl phthalate (DiBP), di-n-butyl phthalate (DnBP), butyl benzyl phthalate (BBzP), and bis(2-ethylhexyl) phthalate (DEHP). Among propellant-type products, repellents contained the highest mean concentrations (3.90 ppm), whereas sterilized products contained the lowest mean concentrations (0.59 ppm). Among trigger-type products, cleaning products contained the highest mean concentrations (4.54 ppm), whereas coating products contained the lowest mean concentrations (0.73 ppm). In both propellant- and trigger-type products, DnBP and DEHP exceeded the standard set by the Ministry of Food and Drug Safety of South Korea. No significant patterns were observed for the airborne DiBP, DnBP, and DEHP concentrations at 1, 3, and 5 m (p > 0.05). Children were one of the population groups most susceptible to health risks. Overall, phthalates were detected in both product solutions and the air in consumer spray products; some even exceeded safe limits. Therefore, consumer spray products should be used in well-ventilated areas to avoid respiratory exposure.</p></div>\",\"PeriodicalId\":49109,\"journal\":{\"name\":\"Air Quality Atmosphere and Health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11869-024-01560-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Air Quality Atmosphere and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11869-024-01560-z\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Quality Atmosphere and Health","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11869-024-01560-z","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Characteristics of phthalate concentrations in propellant- and trigger-type consumer spray products
The purposes of this study were to evaluate the bulk sample concentration and airborne concentrations of phthalate in different types of propellent and triggers in consumer spray products and estimate health risk assessment via inhalation. First, the phthalate concentrations were analyzed in the solutions of all products 174 from markets. Then, among 64 products containing phthalates, 10 propellant-type products were selected that contained high phthalate concentrations; airborne concentrations were measured at distances of 1, 3, and 5 m from the spray nozzle in a clean room. Four phthalates were detected in spray products: diisobutyl phthalate (DiBP), di-n-butyl phthalate (DnBP), butyl benzyl phthalate (BBzP), and bis(2-ethylhexyl) phthalate (DEHP). Among propellant-type products, repellents contained the highest mean concentrations (3.90 ppm), whereas sterilized products contained the lowest mean concentrations (0.59 ppm). Among trigger-type products, cleaning products contained the highest mean concentrations (4.54 ppm), whereas coating products contained the lowest mean concentrations (0.73 ppm). In both propellant- and trigger-type products, DnBP and DEHP exceeded the standard set by the Ministry of Food and Drug Safety of South Korea. No significant patterns were observed for the airborne DiBP, DnBP, and DEHP concentrations at 1, 3, and 5 m (p > 0.05). Children were one of the population groups most susceptible to health risks. Overall, phthalates were detected in both product solutions and the air in consumer spray products; some even exceeded safe limits. Therefore, consumer spray products should be used in well-ventilated areas to avoid respiratory exposure.
期刊介绍:
Air Quality, Atmosphere, and Health is a multidisciplinary journal which, by its very name, illustrates the broad range of work it publishes and which focuses on atmospheric consequences of human activities and their implications for human and ecological health.
It offers research papers, critical literature reviews and commentaries, as well as special issues devoted to topical subjects or themes.
International in scope, the journal presents papers that inform and stimulate a global readership, as the topic addressed are global in their import. Consequently, we do not encourage submission of papers involving local data that relate to local problems. Unless they demonstrate wide applicability, these are better submitted to national or regional journals.
Air Quality, Atmosphere & Health addresses such topics as acid precipitation; airborne particulate matter; air quality monitoring and management; exposure assessment; risk assessment; indoor air quality; atmospheric chemistry; atmospheric modeling and prediction; air pollution climatology; climate change and air quality; air pollution measurement; atmospheric impact assessment; forest-fire emissions; atmospheric science; greenhouse gases; health and ecological effects; clean air technology; regional and global change and satellite measurements.
This journal benefits a diverse audience of researchers, public health officials and policy makers addressing problems that call for solutions based in evidence from atmospheric and exposure assessment scientists, epidemiologists, and risk assessors. Publication in the journal affords the opportunity to reach beyond defined disciplinary niches to this broader readership.