Matthias Eibauer, Miriam S. Weber, Rafael Kronenberg-Tenga, Charlie T. Beales, Rajaa Boujemaa-Paterski, Yagmur Turgay, Suganya Sivagurunathan, Julia Kraxner, Sarah Köster, Robert D. Goldman, Ohad Medalia
{"title":"波形蛋白丝在复杂的螺旋结构中整合了低复杂度结构域","authors":"Matthias Eibauer, Miriam S. Weber, Rafael Kronenberg-Tenga, Charlie T. Beales, Rajaa Boujemaa-Paterski, Yagmur Turgay, Suganya Sivagurunathan, Julia Kraxner, Sarah Köster, Robert D. Goldman, Ohad Medalia","doi":"10.1038/s41594-024-01261-2","DOIUrl":null,"url":null,"abstract":"Intermediate filaments (IFs) are integral components of the cytoskeleton. They provide cells with tissue-specific mechanical properties and are involved in numerous cellular processes. Due to their intricate architecture, a 3D structure of IFs has remained elusive. Here we use cryo-focused ion-beam milling, cryo-electron microscopy and tomography to obtain a 3D structure of vimentin IFs (VIFs). VIFs assemble into a modular, intertwined and flexible helical structure of 40 α-helices in cross-section, organized into five protofibrils. Surprisingly, the intrinsically disordered head domains form a fiber in the lumen of VIFs, while the intrinsically disordered tails form lateral connections between the protofibrils. Our findings demonstrate how protein domains of low sequence complexity can complement well-folded protein domains to construct a biopolymer with striking mechanical strength and stretchability. Using cryo-electron microscopy and integrative modeling, the authors defined the structure of vimentin intermediate filaments, revealing a helical tube built of five protofibrils that enclose a fiber of low-complexity N-terminal domains.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 6","pages":"939-949"},"PeriodicalIF":12.5000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41594-024-01261-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Vimentin filaments integrate low-complexity domains in a complex helical structure\",\"authors\":\"Matthias Eibauer, Miriam S. Weber, Rafael Kronenberg-Tenga, Charlie T. Beales, Rajaa Boujemaa-Paterski, Yagmur Turgay, Suganya Sivagurunathan, Julia Kraxner, Sarah Köster, Robert D. Goldman, Ohad Medalia\",\"doi\":\"10.1038/s41594-024-01261-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intermediate filaments (IFs) are integral components of the cytoskeleton. They provide cells with tissue-specific mechanical properties and are involved in numerous cellular processes. Due to their intricate architecture, a 3D structure of IFs has remained elusive. Here we use cryo-focused ion-beam milling, cryo-electron microscopy and tomography to obtain a 3D structure of vimentin IFs (VIFs). VIFs assemble into a modular, intertwined and flexible helical structure of 40 α-helices in cross-section, organized into five protofibrils. Surprisingly, the intrinsically disordered head domains form a fiber in the lumen of VIFs, while the intrinsically disordered tails form lateral connections between the protofibrils. Our findings demonstrate how protein domains of low sequence complexity can complement well-folded protein domains to construct a biopolymer with striking mechanical strength and stretchability. Using cryo-electron microscopy and integrative modeling, the authors defined the structure of vimentin intermediate filaments, revealing a helical tube built of five protofibrils that enclose a fiber of low-complexity N-terminal domains.\",\"PeriodicalId\":49141,\"journal\":{\"name\":\"Nature Structural & Molecular Biology\",\"volume\":\"31 6\",\"pages\":\"939-949\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41594-024-01261-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Structural & Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41594-024-01261-2\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Structural & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41594-024-01261-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Vimentin filaments integrate low-complexity domains in a complex helical structure
Intermediate filaments (IFs) are integral components of the cytoskeleton. They provide cells with tissue-specific mechanical properties and are involved in numerous cellular processes. Due to their intricate architecture, a 3D structure of IFs has remained elusive. Here we use cryo-focused ion-beam milling, cryo-electron microscopy and tomography to obtain a 3D structure of vimentin IFs (VIFs). VIFs assemble into a modular, intertwined and flexible helical structure of 40 α-helices in cross-section, organized into five protofibrils. Surprisingly, the intrinsically disordered head domains form a fiber in the lumen of VIFs, while the intrinsically disordered tails form lateral connections between the protofibrils. Our findings demonstrate how protein domains of low sequence complexity can complement well-folded protein domains to construct a biopolymer with striking mechanical strength and stretchability. Using cryo-electron microscopy and integrative modeling, the authors defined the structure of vimentin intermediate filaments, revealing a helical tube built of five protofibrils that enclose a fiber of low-complexity N-terminal domains.
期刊介绍:
Nature Structural & Molecular Biology is a comprehensive platform that combines structural and molecular research. Our journal focuses on exploring the functional and mechanistic aspects of biological processes, emphasizing how molecular components collaborate to achieve a particular function. While structural data can shed light on these insights, our publication does not require them as a prerequisite.