Zhijuan Shi , Sining Liu , Yahan Chen , Dongdong Ding , Wenxuan Han
{"title":"中国东部林木叶片中钾、钙、镁浓度的单纬度模式及其潜在驱动因素","authors":"Zhijuan Shi , Sining Liu , Yahan Chen , Dongdong Ding , Wenxuan Han","doi":"10.1016/j.fecs.2024.100193","DOIUrl":null,"url":null,"abstract":"<div><p>Potassium (K), calcium (Ca), and magnesium (Mg) are essential elements with important physiological functions in plants. Previous studies showed that leaf K, Ca, and Mg concentrations generally increase with increasing latitudes. However, recent meta-analyses suggested the possibility of a unimodal pattern in the concentrations of these elements along latitudinal gradients. The authenticity of this unimodal latitudinal pattern, however, requires validation through large-scale field experimental data, and exploration of the underlying mechanisms if the pattern is confirmed. Here, we collected leaves of common species of woody plants from 19 montane forests in the north-south transect of eastern China, including 322 species from 160 genera, 67 families; and then determined leaf K, Ca, and Mg concentrations to explore their latitudinal patterns and driving mechanisms. Our results support unimodal latitudinal patterns for all three elements in woody plants across eastern China, with peak values at latitude 36.5 ± 1.0° N. The shift of plant-functional-type compositions from evergreen broadleaves to deciduous broadleaves and to conifers along this latitudinal span was the key factor contributing to these patterns. Climatic factors, mainly temperature, and to a lesser extent solar radiation and precipitation, were the main environmental drivers. These factors, by altering the composition of plant communities and regulating plant physiological activities, influence the latitudinal patterns of plant nutrient concentrations. Our findings also suggest that high leaf K, Ca, and Mg concentrations may represent an adaptive strategy for plants to withstand water stress, which might be used to predict plant nutrient responses to climate changes at large scales, and broaden the understanding of biogeochemical cycling of K, Ca, and Mg.</p></div>","PeriodicalId":54270,"journal":{"name":"Forest Ecosystems","volume":"11 ","pages":"Article 100193"},"PeriodicalIF":3.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2197562024000290/pdfft?md5=30830bb7dfb76103f05e8ba9dc7f3a79&pid=1-s2.0-S2197562024000290-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The unimodal latitudinal pattern of K, Ca and Mg concentration and its potential drivers in forest foliage in eastern China\",\"authors\":\"Zhijuan Shi , Sining Liu , Yahan Chen , Dongdong Ding , Wenxuan Han\",\"doi\":\"10.1016/j.fecs.2024.100193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Potassium (K), calcium (Ca), and magnesium (Mg) are essential elements with important physiological functions in plants. Previous studies showed that leaf K, Ca, and Mg concentrations generally increase with increasing latitudes. However, recent meta-analyses suggested the possibility of a unimodal pattern in the concentrations of these elements along latitudinal gradients. The authenticity of this unimodal latitudinal pattern, however, requires validation through large-scale field experimental data, and exploration of the underlying mechanisms if the pattern is confirmed. Here, we collected leaves of common species of woody plants from 19 montane forests in the north-south transect of eastern China, including 322 species from 160 genera, 67 families; and then determined leaf K, Ca, and Mg concentrations to explore their latitudinal patterns and driving mechanisms. Our results support unimodal latitudinal patterns for all three elements in woody plants across eastern China, with peak values at latitude 36.5 ± 1.0° N. The shift of plant-functional-type compositions from evergreen broadleaves to deciduous broadleaves and to conifers along this latitudinal span was the key factor contributing to these patterns. Climatic factors, mainly temperature, and to a lesser extent solar radiation and precipitation, were the main environmental drivers. These factors, by altering the composition of plant communities and regulating plant physiological activities, influence the latitudinal patterns of plant nutrient concentrations. Our findings also suggest that high leaf K, Ca, and Mg concentrations may represent an adaptive strategy for plants to withstand water stress, which might be used to predict plant nutrient responses to climate changes at large scales, and broaden the understanding of biogeochemical cycling of K, Ca, and Mg.</p></div>\",\"PeriodicalId\":54270,\"journal\":{\"name\":\"Forest Ecosystems\",\"volume\":\"11 \",\"pages\":\"Article 100193\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2197562024000290/pdfft?md5=30830bb7dfb76103f05e8ba9dc7f3a79&pid=1-s2.0-S2197562024000290-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forest Ecosystems\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2197562024000290\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Ecosystems","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2197562024000290","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
The unimodal latitudinal pattern of K, Ca and Mg concentration and its potential drivers in forest foliage in eastern China
Potassium (K), calcium (Ca), and magnesium (Mg) are essential elements with important physiological functions in plants. Previous studies showed that leaf K, Ca, and Mg concentrations generally increase with increasing latitudes. However, recent meta-analyses suggested the possibility of a unimodal pattern in the concentrations of these elements along latitudinal gradients. The authenticity of this unimodal latitudinal pattern, however, requires validation through large-scale field experimental data, and exploration of the underlying mechanisms if the pattern is confirmed. Here, we collected leaves of common species of woody plants from 19 montane forests in the north-south transect of eastern China, including 322 species from 160 genera, 67 families; and then determined leaf K, Ca, and Mg concentrations to explore their latitudinal patterns and driving mechanisms. Our results support unimodal latitudinal patterns for all three elements in woody plants across eastern China, with peak values at latitude 36.5 ± 1.0° N. The shift of plant-functional-type compositions from evergreen broadleaves to deciduous broadleaves and to conifers along this latitudinal span was the key factor contributing to these patterns. Climatic factors, mainly temperature, and to a lesser extent solar radiation and precipitation, were the main environmental drivers. These factors, by altering the composition of plant communities and regulating plant physiological activities, influence the latitudinal patterns of plant nutrient concentrations. Our findings also suggest that high leaf K, Ca, and Mg concentrations may represent an adaptive strategy for plants to withstand water stress, which might be used to predict plant nutrient responses to climate changes at large scales, and broaden the understanding of biogeochemical cycling of K, Ca, and Mg.
Forest EcosystemsEnvironmental Science-Nature and Landscape Conservation
CiteScore
7.10
自引率
4.90%
发文量
1115
审稿时长
22 days
期刊介绍:
Forest Ecosystems is an open access, peer-reviewed journal publishing scientific communications from any discipline that can provide interesting contributions about the structure and dynamics of "natural" and "domesticated" forest ecosystems, and their services to people. The journal welcomes innovative science as well as application oriented work that will enhance understanding of woody plant communities. Very specific studies are welcome if they are part of a thematic series that provides some holistic perspective that is of general interest.