数据高效开路电压滞后建模 - 从 SOH 到 SOH 和不同锂离子电池化学性质的轨迹修正滞后 (TCH) 模型的转移拟合

IF 5.4 Q2 CHEMISTRY, PHYSICAL Journal of Power Sources Advances Pub Date : 2024-04-17 DOI:10.1016/j.powera.2024.100146
Jakob Schmitt, Ivo Horstkötter, Bernard Bäker
{"title":"数据高效开路电压滞后建模 - 从 SOH 到 SOH 和不同锂离子电池化学性质的轨迹修正滞后 (TCH) 模型的转移拟合","authors":"Jakob Schmitt,&nbsp;Ivo Horstkötter,&nbsp;Bernard Bäker","doi":"10.1016/j.powera.2024.100146","DOIUrl":null,"url":null,"abstract":"<div><p>The novel trajectory correction hysteresis model (TCH) is based on measuring the first-order reversal branches (FORBs). As the enormous measurement effort required for parameterisation hinders a real-world application, this paper presents the data-efficient transfer fit (TF) method. The TF methodology is validated through two application cases: ageing update and cell chemistry adaptation. Remarkably, using only 12 measurement points on the open-circuit voltage (OCV) envelopes instead of hundreds of measurement data points, the ageing update TF model attains a mean absolute error (mae) of 4.1 mV, closely approaching the accuracy of a newly parameterised target model (3.6 mV mae). Similarly, adapting an NCA cell model to an NMC target cell using selected OCV envelope points yields a 5.3 mV mae, which further reduces to 3.2 mV with an additional discharge FORB starting at 10% SOC. In addition to the selective model adjustment using continuous OCV measurement trajectories, the much more realistic adaptation by measurement points randomly distributed within the hysteresis window was successfully demonstrated. The presented TF methodology overcomes the hurdle of data efficiency while maintaining model accuracy and paves the way for the future application of the TCH model for voltage-based SOC correction.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"27 ","pages":"Article 100146"},"PeriodicalIF":5.4000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266624852400012X/pdfft?md5=9b26e1758928d601d5490fea56da8d66&pid=1-s2.0-S266624852400012X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Data efficient open circuit voltage hysteresis modelling – Transfer fitting the trajectory correction hysteresis (TCH) model from SOH-to-SOH and different li-ion cell chemistries\",\"authors\":\"Jakob Schmitt,&nbsp;Ivo Horstkötter,&nbsp;Bernard Bäker\",\"doi\":\"10.1016/j.powera.2024.100146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The novel trajectory correction hysteresis model (TCH) is based on measuring the first-order reversal branches (FORBs). As the enormous measurement effort required for parameterisation hinders a real-world application, this paper presents the data-efficient transfer fit (TF) method. The TF methodology is validated through two application cases: ageing update and cell chemistry adaptation. Remarkably, using only 12 measurement points on the open-circuit voltage (OCV) envelopes instead of hundreds of measurement data points, the ageing update TF model attains a mean absolute error (mae) of 4.1 mV, closely approaching the accuracy of a newly parameterised target model (3.6 mV mae). Similarly, adapting an NCA cell model to an NMC target cell using selected OCV envelope points yields a 5.3 mV mae, which further reduces to 3.2 mV with an additional discharge FORB starting at 10% SOC. In addition to the selective model adjustment using continuous OCV measurement trajectories, the much more realistic adaptation by measurement points randomly distributed within the hysteresis window was successfully demonstrated. The presented TF methodology overcomes the hurdle of data efficiency while maintaining model accuracy and paves the way for the future application of the TCH model for voltage-based SOC correction.</p></div>\",\"PeriodicalId\":34318,\"journal\":{\"name\":\"Journal of Power Sources Advances\",\"volume\":\"27 \",\"pages\":\"Article 100146\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266624852400012X/pdfft?md5=9b26e1758928d601d5490fea56da8d66&pid=1-s2.0-S266624852400012X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266624852400012X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266624852400012X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

新颖的轨迹修正滞后模型(TCH)以测量一阶反转分支(FORB)为基础。由于参数化所需的大量测量工作阻碍了实际应用,本文提出了数据高效的转移拟合(TF)方法。TF 方法通过两个应用案例进行了验证:老化更新和细胞化学适应。值得注意的是,仅使用开路电压(OCV)包络线上的 12 个测量点而不是数百个测量数据点,老化更新 TF 模型的平均绝对误差(mae)就达到了 4.1 mV,接近新参数化目标模型的精度(3.6 mV mae)。同样,使用选定的 OCV 包络点将 NCA 电池模型调整为 NMC 目标电池,可获得 5.3 mV 的平均绝对误差,而从 10% SOC 开始的额外放电 FORB 可将平均绝对误差进一步降至 3.2 mV。除了使用连续的 OCV 测量轨迹进行选择性模型调整外,还成功演示了通过随机分布在滞后窗口内的测量点进行更为真实的适应性调整。所介绍的 TF 方法克服了数据效率的障碍,同时保持了模型的准确性,为未来应用 TCH 模型进行基于电压的 SOC 校正铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data efficient open circuit voltage hysteresis modelling – Transfer fitting the trajectory correction hysteresis (TCH) model from SOH-to-SOH and different li-ion cell chemistries

The novel trajectory correction hysteresis model (TCH) is based on measuring the first-order reversal branches (FORBs). As the enormous measurement effort required for parameterisation hinders a real-world application, this paper presents the data-efficient transfer fit (TF) method. The TF methodology is validated through two application cases: ageing update and cell chemistry adaptation. Remarkably, using only 12 measurement points on the open-circuit voltage (OCV) envelopes instead of hundreds of measurement data points, the ageing update TF model attains a mean absolute error (mae) of 4.1 mV, closely approaching the accuracy of a newly parameterised target model (3.6 mV mae). Similarly, adapting an NCA cell model to an NMC target cell using selected OCV envelope points yields a 5.3 mV mae, which further reduces to 3.2 mV with an additional discharge FORB starting at 10% SOC. In addition to the selective model adjustment using continuous OCV measurement trajectories, the much more realistic adaptation by measurement points randomly distributed within the hysteresis window was successfully demonstrated. The presented TF methodology overcomes the hurdle of data efficiency while maintaining model accuracy and paves the way for the future application of the TCH model for voltage-based SOC correction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
18
审稿时长
64 days
期刊最新文献
Formulating PEO-polycarbonate blends as solid polymer electrolytes by solvent-free extrusion Enhancing performance and sustainability of lithium manganese oxide cathodes with a poly(ionic liquid) binder and ionic liquid electrolyte Enhancing the stability of sodium-ion capacitors by introducing glyoxylic-acetal based electrolyte The implementation of a voltage-based tunneling mechanism in aging models for lithium-ion batteries Electronic structure evolution upon lithiation: A Li K-edge study of silicon oxide anode through X-ray Raman spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1