{"title":"可持续金属铁基滤水器材料:综述","authors":"Minhui Xiao, Rui Hu, Willis Gwenzi, Ran Tao, Xuesong Cui, Huichen Yang, Chicgoua Noubactep","doi":"10.1007/s10311-024-01736-0","DOIUrl":null,"url":null,"abstract":"<div><p>Water pollution is calling for a sustainable remediation method such as the use of metallic iron (Fe<sup>0</sup>) to reduce and filter some pollutants, yet the reactivity and hydraulic conductivity of iron filters decline over time under field conditions. Here we review iron filters with focus on metallic corrosion in porous media, flaws in designing iron filters, next-generation filters and perspectives such as safe drinking water supply, iron for anaemia control and coping with a reactive material. We argue that assumptions sustaining the design of current Fe<sup>0</sup> filters are not valid because proposed solutions address the issues of declining iron reactivity and hydraulic conductivity separately. Alternatively, a recent approach suggest that each individual Fe<sup>0</sup> atom corroding within a filter contributes to both reactivity and permeability loss. This approach applies well to alternative iron materials such as bimetallics, composites, hybrid aggregates, e.g. Fe<sup>0</sup>/sand, and nano-Fe<sup>0</sup>. Characterizing the intrinsic reactivity of individual Fe<sup>0</sup> materials is a prerequisite to designing sustainable filters. Indeed, Fe<sup>0</sup> ratio, Fe<sup>0</sup> type, Fe<sup>0</sup> shape, initial porosity, e.g. pore size and pore size distribution, and nature and size of admixing aggregates, e.g. pumice, pyrite and sand, are interrelated parameters which all influence the generation and accumulation of iron corrosion products. Fe<sup>0</sup> should be characterized in long-term experiments, e.g. 12 months or longer, for Fe dissolution, H<sub>2</sub> generation and removal of contaminants in three media, i.e., tap water, spring water and saline water, to allow reactivity comparison and designing field-scale filters.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 4","pages":"2113 - 2131"},"PeriodicalIF":15.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10311-024-01736-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Materials for sustainable metallic iron-based water filters: a review\",\"authors\":\"Minhui Xiao, Rui Hu, Willis Gwenzi, Ran Tao, Xuesong Cui, Huichen Yang, Chicgoua Noubactep\",\"doi\":\"10.1007/s10311-024-01736-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Water pollution is calling for a sustainable remediation method such as the use of metallic iron (Fe<sup>0</sup>) to reduce and filter some pollutants, yet the reactivity and hydraulic conductivity of iron filters decline over time under field conditions. Here we review iron filters with focus on metallic corrosion in porous media, flaws in designing iron filters, next-generation filters and perspectives such as safe drinking water supply, iron for anaemia control and coping with a reactive material. We argue that assumptions sustaining the design of current Fe<sup>0</sup> filters are not valid because proposed solutions address the issues of declining iron reactivity and hydraulic conductivity separately. Alternatively, a recent approach suggest that each individual Fe<sup>0</sup> atom corroding within a filter contributes to both reactivity and permeability loss. This approach applies well to alternative iron materials such as bimetallics, composites, hybrid aggregates, e.g. Fe<sup>0</sup>/sand, and nano-Fe<sup>0</sup>. Characterizing the intrinsic reactivity of individual Fe<sup>0</sup> materials is a prerequisite to designing sustainable filters. Indeed, Fe<sup>0</sup> ratio, Fe<sup>0</sup> type, Fe<sup>0</sup> shape, initial porosity, e.g. pore size and pore size distribution, and nature and size of admixing aggregates, e.g. pumice, pyrite and sand, are interrelated parameters which all influence the generation and accumulation of iron corrosion products. Fe<sup>0</sup> should be characterized in long-term experiments, e.g. 12 months or longer, for Fe dissolution, H<sub>2</sub> generation and removal of contaminants in three media, i.e., tap water, spring water and saline water, to allow reactivity comparison and designing field-scale filters.</p></div>\",\"PeriodicalId\":541,\"journal\":{\"name\":\"Environmental Chemistry Letters\",\"volume\":\"22 4\",\"pages\":\"2113 - 2131\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10311-024-01736-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Chemistry Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10311-024-01736-0\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10311-024-01736-0","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Materials for sustainable metallic iron-based water filters: a review
Water pollution is calling for a sustainable remediation method such as the use of metallic iron (Fe0) to reduce and filter some pollutants, yet the reactivity and hydraulic conductivity of iron filters decline over time under field conditions. Here we review iron filters with focus on metallic corrosion in porous media, flaws in designing iron filters, next-generation filters and perspectives such as safe drinking water supply, iron for anaemia control and coping with a reactive material. We argue that assumptions sustaining the design of current Fe0 filters are not valid because proposed solutions address the issues of declining iron reactivity and hydraulic conductivity separately. Alternatively, a recent approach suggest that each individual Fe0 atom corroding within a filter contributes to both reactivity and permeability loss. This approach applies well to alternative iron materials such as bimetallics, composites, hybrid aggregates, e.g. Fe0/sand, and nano-Fe0. Characterizing the intrinsic reactivity of individual Fe0 materials is a prerequisite to designing sustainable filters. Indeed, Fe0 ratio, Fe0 type, Fe0 shape, initial porosity, e.g. pore size and pore size distribution, and nature and size of admixing aggregates, e.g. pumice, pyrite and sand, are interrelated parameters which all influence the generation and accumulation of iron corrosion products. Fe0 should be characterized in long-term experiments, e.g. 12 months or longer, for Fe dissolution, H2 generation and removal of contaminants in three media, i.e., tap water, spring water and saline water, to allow reactivity comparison and designing field-scale filters.
期刊介绍:
Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.