Chenghao Qian, Mengna Shi, Changcheng Liu, Que Huang, Yanjun Chen
{"title":"利用羧甲基纤维素钠原位构建多孔碳衬底,提高 Na3V2(PO4)3 阴极材料的超长寿命","authors":"Chenghao Qian, Mengna Shi, Changcheng Liu, Que Huang, Yanjun Chen","doi":"10.1016/j.mtener.2024.101570","DOIUrl":null,"url":null,"abstract":"NaV(PO) (trisodium divanadium (III) tris (orthophosphate [NVP]), the cathode material for sodium ion batteries, faces several challenges, such as lower intrinsic electronic and ionic conductivities, which hinder its commercial viability. In this work, NVP system is modified by introducing sodium carboxymethyl cellulose (Na CMC) to achieve triple modification effects: sodium-rich, cross-linked carbon coating network, and carbon layer surface modification. Meanwhile, CMC, as a porous carbon substrate with large pores, provides a fast migration channel for Na. Similarly, carbon nanotubes (CNTs) grown from the active particles become the connecting carriers between the active particles, thus effectively improving the electron transport. Notably, the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images after cycling verify the stabilized porous structure of the NaV(PO)/C@0.7wt.%CMC@CNTs (0.7wt.%CMC@CNTs) composite. Distinctively, the modified 0.7wt.%CMC@CNTs reveals a capacity of 111.4 mAh/g at 0.1 C. It submits a high value of 105.0 mAh/g at 1 C with a capacity retention rate of 84.10% after 1,000 cycles. Even at 15 C, it still releases 86.6 mAh/g with a low capacity decay rate of 0.0230% per cycle after 3,600 cycles. Notably, its capacity retention reaches an astonishing 96.09% after 13,000 cycles at an ultra-high rate of 80 C.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"62 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ construction of porous carbon substrate from sodium carboxymethyl cellulose boosting ultra-long lifespan for Na3V2(PO4)3 cathode material\",\"authors\":\"Chenghao Qian, Mengna Shi, Changcheng Liu, Que Huang, Yanjun Chen\",\"doi\":\"10.1016/j.mtener.2024.101570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NaV(PO) (trisodium divanadium (III) tris (orthophosphate [NVP]), the cathode material for sodium ion batteries, faces several challenges, such as lower intrinsic electronic and ionic conductivities, which hinder its commercial viability. In this work, NVP system is modified by introducing sodium carboxymethyl cellulose (Na CMC) to achieve triple modification effects: sodium-rich, cross-linked carbon coating network, and carbon layer surface modification. Meanwhile, CMC, as a porous carbon substrate with large pores, provides a fast migration channel for Na. Similarly, carbon nanotubes (CNTs) grown from the active particles become the connecting carriers between the active particles, thus effectively improving the electron transport. Notably, the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images after cycling verify the stabilized porous structure of the NaV(PO)/C@0.7wt.%CMC@CNTs (0.7wt.%CMC@CNTs) composite. Distinctively, the modified 0.7wt.%CMC@CNTs reveals a capacity of 111.4 mAh/g at 0.1 C. It submits a high value of 105.0 mAh/g at 1 C with a capacity retention rate of 84.10% after 1,000 cycles. Even at 15 C, it still releases 86.6 mAh/g with a low capacity decay rate of 0.0230% per cycle after 3,600 cycles. Notably, its capacity retention reaches an astonishing 96.09% after 13,000 cycles at an ultra-high rate of 80 C.\",\"PeriodicalId\":18277,\"journal\":{\"name\":\"Materials Today Energy\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtener.2024.101570\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101570","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
In-situ construction of porous carbon substrate from sodium carboxymethyl cellulose boosting ultra-long lifespan for Na3V2(PO4)3 cathode material
NaV(PO) (trisodium divanadium (III) tris (orthophosphate [NVP]), the cathode material for sodium ion batteries, faces several challenges, such as lower intrinsic electronic and ionic conductivities, which hinder its commercial viability. In this work, NVP system is modified by introducing sodium carboxymethyl cellulose (Na CMC) to achieve triple modification effects: sodium-rich, cross-linked carbon coating network, and carbon layer surface modification. Meanwhile, CMC, as a porous carbon substrate with large pores, provides a fast migration channel for Na. Similarly, carbon nanotubes (CNTs) grown from the active particles become the connecting carriers between the active particles, thus effectively improving the electron transport. Notably, the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images after cycling verify the stabilized porous structure of the NaV(PO)/C@0.7wt.%CMC@CNTs (0.7wt.%CMC@CNTs) composite. Distinctively, the modified 0.7wt.%CMC@CNTs reveals a capacity of 111.4 mAh/g at 0.1 C. It submits a high value of 105.0 mAh/g at 1 C with a capacity retention rate of 84.10% after 1,000 cycles. Even at 15 C, it still releases 86.6 mAh/g with a low capacity decay rate of 0.0230% per cycle after 3,600 cycles. Notably, its capacity retention reaches an astonishing 96.09% after 13,000 cycles at an ultra-high rate of 80 C.
期刊介绍:
Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy.
Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials.
Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to:
-Solar energy conversion
-Hydrogen generation
-Photocatalysis
-Thermoelectric materials and devices
-Materials for nuclear energy applications
-Materials for Energy Storage
-Environment protection
-Sustainable and green materials