半连续时间序列波动模型中的准概率估计

IF 1.2 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Journal of Time Series Analysis Pub Date : 2024-04-17 DOI:10.1111/jtsa.12741
Šárka Hudecová, Michal Pešta
{"title":"半连续时间序列波动模型中的准概率估计","authors":"Šárka Hudecová,&nbsp;Michal Pešta","doi":"10.1111/jtsa.12741","DOIUrl":null,"url":null,"abstract":"<p>Time series containing non-negligible portion of possibly dependent zeros, whereas the remaining observations are positive, are considered. They are regarded as GARCH processes consisting of non-negative values. Our first aim lies in estimation of the omnibus model parameters taking into account the semi-continuous distribution. The hurdle distribution together with dependent zeros cause that the classical GARCH estimation techniques fail. Two different quasi-likelihood approaches are employed. Both estimators are proved to be strongly consistent and asymptotically normal. The second goal consists in the proposed predictions with bootstrap add-ons. The considered class of models can be reformulated as multiplicative error models. The empirical properties are illustrated in a simulation study, which demonstrates computational efficiency of the employed methods. The developed techniques are presented through an actuarial problem concerning insurance claims.</p>","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":"45 6","pages":"859-883"},"PeriodicalIF":1.2000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtsa.12741","citationCount":"0","resultStr":"{\"title\":\"Quasi-Likelihood Estimation in Volatility Models for Semi-Continuous Time Series\",\"authors\":\"Šárka Hudecová,&nbsp;Michal Pešta\",\"doi\":\"10.1111/jtsa.12741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Time series containing non-negligible portion of possibly dependent zeros, whereas the remaining observations are positive, are considered. They are regarded as GARCH processes consisting of non-negative values. Our first aim lies in estimation of the omnibus model parameters taking into account the semi-continuous distribution. The hurdle distribution together with dependent zeros cause that the classical GARCH estimation techniques fail. Two different quasi-likelihood approaches are employed. Both estimators are proved to be strongly consistent and asymptotically normal. The second goal consists in the proposed predictions with bootstrap add-ons. The considered class of models can be reformulated as multiplicative error models. The empirical properties are illustrated in a simulation study, which demonstrates computational efficiency of the employed methods. The developed techniques are presented through an actuarial problem concerning insurance claims.</p>\",\"PeriodicalId\":49973,\"journal\":{\"name\":\"Journal of Time Series Analysis\",\"volume\":\"45 6\",\"pages\":\"859-883\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtsa.12741\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Time Series Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12741\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Time Series Analysis","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12741","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

考虑的时间序列包含不可忽略的部分可能依赖的零,而其余观测值为正。它们被视为由非负值组成的 GARCH 过程。我们的首要目标是在考虑半连续分布的情况下估计综合模型参数。阶跃分布和从属零导致经典的 GARCH 估计技术失效。我们采用了两种不同的准似然法。这两种估计方法都被证明具有很强的一致性和渐近正态性。第二个目标是利用自举法附加物进行预测。所考虑的这一类模型可以重新表述为乘法误差模型。通过模拟研究说明了经验特性,证明了所采用方法的计算效率。通过一个有关保险索赔的精算问题介绍了所开发的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quasi-Likelihood Estimation in Volatility Models for Semi-Continuous Time Series

Time series containing non-negligible portion of possibly dependent zeros, whereas the remaining observations are positive, are considered. They are regarded as GARCH processes consisting of non-negative values. Our first aim lies in estimation of the omnibus model parameters taking into account the semi-continuous distribution. The hurdle distribution together with dependent zeros cause that the classical GARCH estimation techniques fail. Two different quasi-likelihood approaches are employed. Both estimators are proved to be strongly consistent and asymptotically normal. The second goal consists in the proposed predictions with bootstrap add-ons. The considered class of models can be reformulated as multiplicative error models. The empirical properties are illustrated in a simulation study, which demonstrates computational efficiency of the employed methods. The developed techniques are presented through an actuarial problem concerning insurance claims.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Time Series Analysis
Journal of Time Series Analysis 数学-数学跨学科应用
CiteScore
2.00
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: During the last 30 years Time Series Analysis has become one of the most important and widely used branches of Mathematical Statistics. Its fields of application range from neurophysiology to astrophysics and it covers such well-known areas as economic forecasting, study of biological data, control systems, signal processing and communications and vibrations engineering. The Journal of Time Series Analysis started in 1980, has since become the leading journal in its field, publishing papers on both fundamental theory and applications, as well as review papers dealing with recent advances in major areas of the subject and short communications on theoretical developments. The editorial board consists of many of the world''s leading experts in Time Series Analysis.
期刊最新文献
Issue Information Editorial Announcement: Journal of Time Series Analysis Distinguished Authors 2024 Time Series for QFFE: Special Issue of the Journal of Time Series Analysis High-Frequency Instruments and Identification-Robust Inference for Stochastic Volatility Models Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1