Srinivasan Ramalingam, Zar Le Myint, Soon Young Ahn, Jung A. Ryu, Sang-min Lee, Hae Keun Yun
{"title":"紫外线-C 处理可激发葡萄树对灰葡萄孢菌感染的抗性反应并改善果实特性","authors":"Srinivasan Ramalingam, Zar Le Myint, Soon Young Ahn, Jung A. Ryu, Sang-min Lee, Hae Keun Yun","doi":"10.1007/s13580-024-00602-w","DOIUrl":null,"url":null,"abstract":"<p>UV-C exhibits efficient growth inhibition against a wide range of microorganisms and has an elicitor impact on the induction of resistance against pathogens in host plants, emerging as a promising alternative to fungicides. This study examined the defense elicitor effect of both low (0.05 W/cm<sup>2</sup>) and high (0.133 W/cm<sup>2</sup>) powered UV-C (275 nm) against <i>Botrytis cinerea</i> on grapevines. Gene expression, total stilbene content, and the quality of the berries were assessed in ‘Kyoho’ grapevines irradiated with UV-C. Low and high-powered UV-C reduced the in vitro growth of <i>B. cinerea</i> by 40–50% and lowered the in vivo infection and disease severity by 40–85% in the leaves. Lesion formation was reduced by 20–50% in berries treated with UV-C. The spores of <i>B. cinerea</i> did not infect the unwounded berries of ‘Shine Muscat’ and ‘Kyoho’ grape treated with UV-C. The augmented levels of total soluble solids, color values, and reduced titratable acidity improved the quality of the UV-C-irradiated ‘Kyoho’ berries compared to the control. The total stilbene content was four to five times higher with 37.48 µg g<sup>−1</sup> fresh weight (FW) using low UV-powered UV-C and 43.11 µg g<sup>−1</sup> FW using high UV-powered UV-C in ‘Kyoho’ berry skins treated with UV-C compared to the control (9.24 µg g<sup>−1</sup> FW), with predominant levels of <i>trans</i>-resveratrol. The genes involved in stilbene synthesis, defense, and antioxidant activity were strongly upregulated in the leaves and berries of grapevines in response to the low and high UV-C treatments. The low and high UV-C treatments elicit the induction of resistances in grapes against <i>B. cinerea</i> and improve the quality of berries. Future research will be needed on other parameters before UV-C irradiation can be applied to inhibit the incidence of grey mold in vineyards.</p>","PeriodicalId":13123,"journal":{"name":"Horticulture Environment and Biotechnology","volume":"14 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UV-C treatment elicits resistant responses against Botrytis cinerea infection and the improvement of fruit characteristics in grapevines\",\"authors\":\"Srinivasan Ramalingam, Zar Le Myint, Soon Young Ahn, Jung A. Ryu, Sang-min Lee, Hae Keun Yun\",\"doi\":\"10.1007/s13580-024-00602-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>UV-C exhibits efficient growth inhibition against a wide range of microorganisms and has an elicitor impact on the induction of resistance against pathogens in host plants, emerging as a promising alternative to fungicides. This study examined the defense elicitor effect of both low (0.05 W/cm<sup>2</sup>) and high (0.133 W/cm<sup>2</sup>) powered UV-C (275 nm) against <i>Botrytis cinerea</i> on grapevines. Gene expression, total stilbene content, and the quality of the berries were assessed in ‘Kyoho’ grapevines irradiated with UV-C. Low and high-powered UV-C reduced the in vitro growth of <i>B. cinerea</i> by 40–50% and lowered the in vivo infection and disease severity by 40–85% in the leaves. Lesion formation was reduced by 20–50% in berries treated with UV-C. The spores of <i>B. cinerea</i> did not infect the unwounded berries of ‘Shine Muscat’ and ‘Kyoho’ grape treated with UV-C. The augmented levels of total soluble solids, color values, and reduced titratable acidity improved the quality of the UV-C-irradiated ‘Kyoho’ berries compared to the control. The total stilbene content was four to five times higher with 37.48 µg g<sup>−1</sup> fresh weight (FW) using low UV-powered UV-C and 43.11 µg g<sup>−1</sup> FW using high UV-powered UV-C in ‘Kyoho’ berry skins treated with UV-C compared to the control (9.24 µg g<sup>−1</sup> FW), with predominant levels of <i>trans</i>-resveratrol. The genes involved in stilbene synthesis, defense, and antioxidant activity were strongly upregulated in the leaves and berries of grapevines in response to the low and high UV-C treatments. The low and high UV-C treatments elicit the induction of resistances in grapes against <i>B. cinerea</i> and improve the quality of berries. Future research will be needed on other parameters before UV-C irradiation can be applied to inhibit the incidence of grey mold in vineyards.</p>\",\"PeriodicalId\":13123,\"journal\":{\"name\":\"Horticulture Environment and Biotechnology\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticulture Environment and Biotechnology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s13580-024-00602-w\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Environment and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s13580-024-00602-w","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
UV-C treatment elicits resistant responses against Botrytis cinerea infection and the improvement of fruit characteristics in grapevines
UV-C exhibits efficient growth inhibition against a wide range of microorganisms and has an elicitor impact on the induction of resistance against pathogens in host plants, emerging as a promising alternative to fungicides. This study examined the defense elicitor effect of both low (0.05 W/cm2) and high (0.133 W/cm2) powered UV-C (275 nm) against Botrytis cinerea on grapevines. Gene expression, total stilbene content, and the quality of the berries were assessed in ‘Kyoho’ grapevines irradiated with UV-C. Low and high-powered UV-C reduced the in vitro growth of B. cinerea by 40–50% and lowered the in vivo infection and disease severity by 40–85% in the leaves. Lesion formation was reduced by 20–50% in berries treated with UV-C. The spores of B. cinerea did not infect the unwounded berries of ‘Shine Muscat’ and ‘Kyoho’ grape treated with UV-C. The augmented levels of total soluble solids, color values, and reduced titratable acidity improved the quality of the UV-C-irradiated ‘Kyoho’ berries compared to the control. The total stilbene content was four to five times higher with 37.48 µg g−1 fresh weight (FW) using low UV-powered UV-C and 43.11 µg g−1 FW using high UV-powered UV-C in ‘Kyoho’ berry skins treated with UV-C compared to the control (9.24 µg g−1 FW), with predominant levels of trans-resveratrol. The genes involved in stilbene synthesis, defense, and antioxidant activity were strongly upregulated in the leaves and berries of grapevines in response to the low and high UV-C treatments. The low and high UV-C treatments elicit the induction of resistances in grapes against B. cinerea and improve the quality of berries. Future research will be needed on other parameters before UV-C irradiation can be applied to inhibit the incidence of grey mold in vineyards.
期刊介绍:
Horticulture, Environment, and Biotechnology (HEB) is the official journal of the Korean Society for Horticultural Science, was launched in 1965 as the "Journal of Korean Society for Horticultural Science".
HEB is an international journal, published in English, bimonthly on the last day of even number months, and indexed in Biosys Preview, SCIE, and CABI.
The journal is devoted for the publication of original research papers and review articles related to vegetables, fruits, ornamental and herbal plants, and covers all aspects of physiology, molecular biology, biotechnology, protected cultivation, postharvest technology, and research in plants related to environment.