使用 MH-LSTM 神经网络方法进行个性化热舒适度预测

IF 1.5 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Advances in Civil Engineering Pub Date : 2024-04-18 DOI:10.1155/2024/2106137
Jaeyoun Cho, Hyunkyu Shin, Yonghan Ahn, Jongnam Ho
{"title":"使用 MH-LSTM 神经网络方法进行个性化热舒适度预测","authors":"Jaeyoun Cho, Hyunkyu Shin, Yonghan Ahn, Jongnam Ho","doi":"10.1155/2024/2106137","DOIUrl":null,"url":null,"abstract":"As demand for indoor thermal comfort increases, occupants’ subjective thermal sensation is becoming an important indicator of the building environment. Traditional models like the predicted mean vote-based model may not be reliable for individual comfort. This study proposed the multihead long short-term memory (LSTM) model to reflect physical and environment-driven data variation. Controlled experiments were conducted with individual temperature measurements of six participants, and the collected data showed significant potential to predict individual thermal comfort using a model trained for each person. The results derived from this study can be utilized, in future, for predicting the thermal comfort and for optimizing the thermal environments using personal body temperature and surrounding environmental data in a space where mainly independent activities are performed. This study contributes to the relevant literature by suggesting a method that predicts thermal comfort based on the multihead LSTM method.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":"58 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Personalized Thermal Comfort Prediction Using an MH-LSTM Neural Network Method\",\"authors\":\"Jaeyoun Cho, Hyunkyu Shin, Yonghan Ahn, Jongnam Ho\",\"doi\":\"10.1155/2024/2106137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As demand for indoor thermal comfort increases, occupants’ subjective thermal sensation is becoming an important indicator of the building environment. Traditional models like the predicted mean vote-based model may not be reliable for individual comfort. This study proposed the multihead long short-term memory (LSTM) model to reflect physical and environment-driven data variation. Controlled experiments were conducted with individual temperature measurements of six participants, and the collected data showed significant potential to predict individual thermal comfort using a model trained for each person. The results derived from this study can be utilized, in future, for predicting the thermal comfort and for optimizing the thermal environments using personal body temperature and surrounding environmental data in a space where mainly independent activities are performed. This study contributes to the relevant literature by suggesting a method that predicts thermal comfort based on the multihead LSTM method.\",\"PeriodicalId\":7242,\"journal\":{\"name\":\"Advances in Civil Engineering\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/2106137\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/2106137","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

随着人们对室内热舒适度要求的提高,居住者的主观热感觉正成为衡量建筑环境的一个重要指标。传统的模型,如基于预测平均值的投票模型,对于个人舒适度而言可能并不可靠。本研究提出了多头长短期记忆(LSTM)模型,以反映物理和环境驱动的数据变化。通过对六名参与者的个人温度测量进行控制实验,收集到的数据显示,使用针对每个人训练的模型预测个人热舒适度具有显著的潜力。本研究得出的结果可用于预测热舒适度,以及在主要进行独立活动的空间中利用个人体温和周围环境数据优化热环境。本研究提出了一种基于多头 LSTM 方法的热舒适度预测方法,为相关文献做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Personalized Thermal Comfort Prediction Using an MH-LSTM Neural Network Method
As demand for indoor thermal comfort increases, occupants’ subjective thermal sensation is becoming an important indicator of the building environment. Traditional models like the predicted mean vote-based model may not be reliable for individual comfort. This study proposed the multihead long short-term memory (LSTM) model to reflect physical and environment-driven data variation. Controlled experiments were conducted with individual temperature measurements of six participants, and the collected data showed significant potential to predict individual thermal comfort using a model trained for each person. The results derived from this study can be utilized, in future, for predicting the thermal comfort and for optimizing the thermal environments using personal body temperature and surrounding environmental data in a space where mainly independent activities are performed. This study contributes to the relevant literature by suggesting a method that predicts thermal comfort based on the multihead LSTM method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Civil Engineering
Advances in Civil Engineering Engineering-Civil and Structural Engineering
CiteScore
4.00
自引率
5.60%
发文量
612
审稿时长
15 weeks
期刊介绍: Advances in Civil Engineering publishes papers in all areas of civil engineering. The journal welcomes submissions across a range of disciplines, and publishes both theoretical and practical studies. Contributions from academia and from industry are equally encouraged. Subject areas include (but are by no means limited to): -Structural mechanics and engineering- Structural design and construction management- Structural analysis and computational mechanics- Construction technology and implementation- Construction materials design and engineering- Highway and transport engineering- Bridge and tunnel engineering- Municipal and urban engineering- Coastal, harbour and offshore engineering-- Geotechnical and earthquake engineering Engineering for water, waste, energy, and environmental applications- Hydraulic engineering and fluid mechanics- Surveying, monitoring, and control systems in construction- Health and safety in a civil engineering setting. Advances in Civil Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
期刊最新文献
Application of Ecofriendly Geopolymer Binder to Enhance the Strength and Swelling Properties of Expansive Soils Application of Fully Connected Neural Network-Based PyTorch in Concrete Compressive Strength Prediction Influence of Mechanical and Microscopic Properties of Red Sandstone Modified by Different Solid Waste Materials A Comparative Study of Subsurface Profile Using Bore Log Data and Geophysical Method at Mandideep Region, India Mapping Longitudinal and Transverse Displacements of a Dam Crest Based on the Synergy of High-Precision Remote Sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1