通过 BIM 和物联网数据集成实现消防疏散动态路径规划的语义方法

IF 1.5 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Advances in Civil Engineering Pub Date : 2024-04-17 DOI:10.1155/2024/8839865
Bo Pang, Jianyong Shi, Liu Jiang, Zeyu Pan
{"title":"通过 BIM 和物联网数据集成实现消防疏散动态路径规划的语义方法","authors":"Bo Pang, Jianyong Shi, Liu Jiang, Zeyu Pan","doi":"10.1155/2024/8839865","DOIUrl":null,"url":null,"abstract":"Fire evacuation path planning involves multiple data sources. In order to develop a dynamic planning, a comprehensive knowledge of the environment involving building information and fire development is required. This article presents a semantic approach that integrates Building Information Modeling (BIM) and Internet of Things (IoT) information to provide a data foundation for dynamic path planning. First, a fire evacuation (FE) ontology is introduced to fuse both knowledge and information relevant to dynamic path planning. Next, a dynamic knowledge graph that evolves according to the development of fire situation is instantiated based on the relevant FE ontology. Finally, to validate the feasibility of the semantic approach based on the ontology and knowledge graph, an example of application is conducted using a specific building as an example. This study provides a data foundation for more intelligent and precise decision-making in fire evacuation scenarios and offers a new approach for safety design and management in the field of construction.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Semantic Approach to Dynamic Path Planning for Fire Evacuation through BIM and IoT Data Integration\",\"authors\":\"Bo Pang, Jianyong Shi, Liu Jiang, Zeyu Pan\",\"doi\":\"10.1155/2024/8839865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fire evacuation path planning involves multiple data sources. In order to develop a dynamic planning, a comprehensive knowledge of the environment involving building information and fire development is required. This article presents a semantic approach that integrates Building Information Modeling (BIM) and Internet of Things (IoT) information to provide a data foundation for dynamic path planning. First, a fire evacuation (FE) ontology is introduced to fuse both knowledge and information relevant to dynamic path planning. Next, a dynamic knowledge graph that evolves according to the development of fire situation is instantiated based on the relevant FE ontology. Finally, to validate the feasibility of the semantic approach based on the ontology and knowledge graph, an example of application is conducted using a specific building as an example. This study provides a data foundation for more intelligent and precise decision-making in fire evacuation scenarios and offers a new approach for safety design and management in the field of construction.\",\"PeriodicalId\":7242,\"journal\":{\"name\":\"Advances in Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/8839865\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/8839865","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

火灾疏散路径规划涉及多个数据源。为了制定动态规划,需要全面了解涉及建筑信息和火灾发展的环境。本文提出了一种整合建筑信息模型(BIM)和物联网(IoT)信息的语义方法,为动态路径规划提供数据基础。首先,介绍了火灾疏散(FE)本体,以融合与动态路径规划相关的知识和信息。其次,基于相关的火灾疏散本体,实例化了根据火灾形势发展而演化的动态知识图谱。最后,为了验证基于本体和知识图谱的语义方法的可行性,我们以一栋特定建筑为例进行了应用实例分析。这项研究为火灾疏散场景中更智能、更精确的决策提供了数据基础,并为建筑领域的安全设计和管理提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Semantic Approach to Dynamic Path Planning for Fire Evacuation through BIM and IoT Data Integration
Fire evacuation path planning involves multiple data sources. In order to develop a dynamic planning, a comprehensive knowledge of the environment involving building information and fire development is required. This article presents a semantic approach that integrates Building Information Modeling (BIM) and Internet of Things (IoT) information to provide a data foundation for dynamic path planning. First, a fire evacuation (FE) ontology is introduced to fuse both knowledge and information relevant to dynamic path planning. Next, a dynamic knowledge graph that evolves according to the development of fire situation is instantiated based on the relevant FE ontology. Finally, to validate the feasibility of the semantic approach based on the ontology and knowledge graph, an example of application is conducted using a specific building as an example. This study provides a data foundation for more intelligent and precise decision-making in fire evacuation scenarios and offers a new approach for safety design and management in the field of construction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Civil Engineering
Advances in Civil Engineering Engineering-Civil and Structural Engineering
CiteScore
4.00
自引率
5.60%
发文量
612
审稿时长
15 weeks
期刊介绍: Advances in Civil Engineering publishes papers in all areas of civil engineering. The journal welcomes submissions across a range of disciplines, and publishes both theoretical and practical studies. Contributions from academia and from industry are equally encouraged. Subject areas include (but are by no means limited to): -Structural mechanics and engineering- Structural design and construction management- Structural analysis and computational mechanics- Construction technology and implementation- Construction materials design and engineering- Highway and transport engineering- Bridge and tunnel engineering- Municipal and urban engineering- Coastal, harbour and offshore engineering-- Geotechnical and earthquake engineering Engineering for water, waste, energy, and environmental applications- Hydraulic engineering and fluid mechanics- Surveying, monitoring, and control systems in construction- Health and safety in a civil engineering setting. Advances in Civil Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
期刊最新文献
Application of Ecofriendly Geopolymer Binder to Enhance the Strength and Swelling Properties of Expansive Soils Application of Fully Connected Neural Network-Based PyTorch in Concrete Compressive Strength Prediction Influence of Mechanical and Microscopic Properties of Red Sandstone Modified by Different Solid Waste Materials A Comparative Study of Subsurface Profile Using Bore Log Data and Geophysical Method at Mandideep Region, India Mapping Longitudinal and Transverse Displacements of a Dam Crest Based on the Synergy of High-Precision Remote Sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1