测试模糊回归不连续设计中 LATE 的识别条件

IF 9.9 3区 经济学 Q1 ECONOMICS Journal of Econometrics Pub Date : 2024-04-01 DOI:10.1016/j.jeconom.2024.105738
Yu-Chin Hsu , Ji-Liang Shiu , Yuanyuan Wan
{"title":"测试模糊回归不连续设计中 LATE 的识别条件","authors":"Yu-Chin Hsu ,&nbsp;Ji-Liang Shiu ,&nbsp;Yuanyuan Wan","doi":"10.1016/j.jeconom.2024.105738","DOIUrl":null,"url":null,"abstract":"<div><p>This paper derives testable implications of the identifying conditions for the local average treatment effect in fuzzy regression discontinuity designs. We show that the testable implications of these identifying conditions are a finite number of inequality restrictions on the observed data distribution. We then propose a specification test for the testable implications and show that the proposed test controls the size and is asymptotically consistent. We apply our test to several fuzzy regression discontinuity designs in the literature.</p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"241 1","pages":"Article 105738"},"PeriodicalIF":9.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing identification conditions of LATE in fuzzy regression discontinuity designs\",\"authors\":\"Yu-Chin Hsu ,&nbsp;Ji-Liang Shiu ,&nbsp;Yuanyuan Wan\",\"doi\":\"10.1016/j.jeconom.2024.105738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper derives testable implications of the identifying conditions for the local average treatment effect in fuzzy regression discontinuity designs. We show that the testable implications of these identifying conditions are a finite number of inequality restrictions on the observed data distribution. We then propose a specification test for the testable implications and show that the proposed test controls the size and is asymptotically consistent. We apply our test to several fuzzy regression discontinuity designs in the literature.</p></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"241 1\",\"pages\":\"Article 105738\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304407624000848\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624000848","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文推导了模糊回归不连续设计中局部平均治疗效果识别条件的可检验含义。我们表明,这些识别条件的可检验含义是对观测数据分布的有限数量的不等式限制。然后,我们提出了可检验含义的规范检验,并证明所提出的检验可以控制规模,而且在渐近上是一致的。我们将我们的检验应用于文献中的几种模糊回归不连续设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Testing identification conditions of LATE in fuzzy regression discontinuity designs

This paper derives testable implications of the identifying conditions for the local average treatment effect in fuzzy regression discontinuity designs. We show that the testable implications of these identifying conditions are a finite number of inequality restrictions on the observed data distribution. We then propose a specification test for the testable implications and show that the proposed test controls the size and is asymptotically consistent. We apply our test to several fuzzy regression discontinuity designs in the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
期刊最新文献
GLS under monotone heteroskedasticity Multivariate spatiotemporal models with low rank coefficient matrix Inference in cluster randomized trials with matched pairs Why are replication rates so low? On the spectral density of fractional Ornstein–Uhlenbeck processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1