使用PYNQ FPGA 进行基于 CNN 的植物病害识别

Vivek Karthick Perumal , Supriyaa T , Santhosh P R , Dhanasekaran S
{"title":"使用PYNQ FPGA 进行基于 CNN 的植物病害识别","authors":"Vivek Karthick Perumal ,&nbsp;Supriyaa T ,&nbsp;Santhosh P R ,&nbsp;Dhanasekaran S","doi":"10.1016/j.sasc.2024.200088","DOIUrl":null,"url":null,"abstract":"<div><p>This research presents a novel approach for plant disease identification utilizing Convolutional Neural Networks (CNNs) and the PYNQ FPGA platform. The study leverages the parallel processing capabilities of FPGAs to accelerate CNN inference, aiming to enhance the efficiency of plant disease detection in agricultural settings. The implementation involves optimizing the CNN architecture for deployment on the PYNQ FPGA, considering factors such as image size and learning rates. Through experimentation, the research refines hyper parameters, achieving improved accuracy and F1 scores. Visualizations using heat maps highlight the CNN's reliance on color, shape, and texture for feature extraction in disease identification. The integration of FPGA technology demonstrates promising advancements in real-time, high-performance plant disease classification, offering potential benefits for precision agriculture and crop management. This research contributes to the growing field of FPGA-accelerated deep learning applications in agro technology, addressing challenges in plant health monitoring and fostering sustainable agricultural practices.</p></div>","PeriodicalId":101205,"journal":{"name":"Systems and Soft Computing","volume":"6 ","pages":"Article 200088"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772941924000176/pdfft?md5=2f62ffd93970e4cfa9b45e376c6ca258&pid=1-s2.0-S2772941924000176-main.pdf","citationCount":"0","resultStr":"{\"title\":\"CNN based plant disease identification using PYNQ FPGA\",\"authors\":\"Vivek Karthick Perumal ,&nbsp;Supriyaa T ,&nbsp;Santhosh P R ,&nbsp;Dhanasekaran S\",\"doi\":\"10.1016/j.sasc.2024.200088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research presents a novel approach for plant disease identification utilizing Convolutional Neural Networks (CNNs) and the PYNQ FPGA platform. The study leverages the parallel processing capabilities of FPGAs to accelerate CNN inference, aiming to enhance the efficiency of plant disease detection in agricultural settings. The implementation involves optimizing the CNN architecture for deployment on the PYNQ FPGA, considering factors such as image size and learning rates. Through experimentation, the research refines hyper parameters, achieving improved accuracy and F1 scores. Visualizations using heat maps highlight the CNN's reliance on color, shape, and texture for feature extraction in disease identification. The integration of FPGA technology demonstrates promising advancements in real-time, high-performance plant disease classification, offering potential benefits for precision agriculture and crop management. This research contributes to the growing field of FPGA-accelerated deep learning applications in agro technology, addressing challenges in plant health monitoring and fostering sustainable agricultural practices.</p></div>\",\"PeriodicalId\":101205,\"journal\":{\"name\":\"Systems and Soft Computing\",\"volume\":\"6 \",\"pages\":\"Article 200088\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772941924000176/pdfft?md5=2f62ffd93970e4cfa9b45e376c6ca258&pid=1-s2.0-S2772941924000176-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems and Soft Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772941924000176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772941924000176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种利用卷积神经网络(CNN)和PYNQ FPGA 平台进行植物病害识别的新方法。该研究利用 FPGA 的并行处理能力加速 CNN 推断,旨在提高农业环境中植物病害检测的效率。实施过程包括优化 CNN 架构,以便在PYNQ FPGA 上部署,同时考虑图像大小和学习率等因素。通过实验,研究改进了超参数,提高了准确率和 F1 分数。使用热图的可视化效果突出了 CNN 在疾病识别中对颜色、形状和纹理特征提取的依赖。FPGA 技术的集成展示了在实时、高性能植物病害分类方面的巨大进步,为精准农业和作物管理提供了潜在的好处。这项研究有助于FPGA加速深度学习在农业技术中的应用,应对植物健康监测和促进可持续农业实践方面的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CNN based plant disease identification using PYNQ FPGA

This research presents a novel approach for plant disease identification utilizing Convolutional Neural Networks (CNNs) and the PYNQ FPGA platform. The study leverages the parallel processing capabilities of FPGAs to accelerate CNN inference, aiming to enhance the efficiency of plant disease detection in agricultural settings. The implementation involves optimizing the CNN architecture for deployment on the PYNQ FPGA, considering factors such as image size and learning rates. Through experimentation, the research refines hyper parameters, achieving improved accuracy and F1 scores. Visualizations using heat maps highlight the CNN's reliance on color, shape, and texture for feature extraction in disease identification. The integration of FPGA technology demonstrates promising advancements in real-time, high-performance plant disease classification, offering potential benefits for precision agriculture and crop management. This research contributes to the growing field of FPGA-accelerated deep learning applications in agro technology, addressing challenges in plant health monitoring and fostering sustainable agricultural practices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
期刊最新文献
A systematic assessment of sentiment analysis models on iraqi dialect-based texts An Enhancement of Bilateral Closed-Loop Functions in Stability Standards for Networked Control Systems with Transmission Delay Application of improved particle swarm optimization algorithm combined with genetic algorithm in shear wall design Path planning of factory handling robot integrating fuzzy logic-PID control technology Application of an intelligent English text classification model with improved KNN algorithm in the context of big data in libraries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1