Alexander Staruschenko, R. Todd Alexander, Michael J. Caplan, Daria V. Ilatovskaya
{"title":"肾脏中的钙信号和转运","authors":"Alexander Staruschenko, R. Todd Alexander, Michael J. Caplan, Daria V. Ilatovskaya","doi":"10.1038/s41581-024-00835-z","DOIUrl":null,"url":null,"abstract":"The kidney plays a pivotal role in regulating calcium levels within the body. Approximately 98% of the filtered calcium is reabsorbed in the nephron, and this process is tightly controlled to maintain calcium homeostasis, which is required to facilitate optimal bone mineralization, preserve serum calcium levels within a narrow range, and support intracellular signalling mechanisms. The maintenance of these functions is attributed to a delicate balance achieved by various calcium channels, transporters, and calcium-binding proteins in renal cells. Perturbation of this balance due to deficiency or dysfunction of calcium channels and calcium-binding proteins can lead to severe complications. For example, polycystic kidney disease is linked to aberrant calcium transport and signalling. Furthermore, dysregulation of calcium levels can promote the formation of kidney stones. This Review provides an updated description of the key aspects of calcium handling in the kidney, focusing on the function of various calcium channels and the physiological stimuli that control these channels or are communicated through them. A discussion of the role of calcium as an intracellular second messenger and the pathophysiology of renal calcium dysregulation, as well as a summary of gaps in knowledge and future prospects, are also included. Calcium reabsorption along the nephron is essential for calcium homeostasis and whole-body electrolyte balance. Here, Staruschenko et al. highlight signalling pathways and molecules involved in renal calcium handling in health and disease, and discuss progress in the integration of systems-level and molecular understanding of calcium transport and regulation.","PeriodicalId":19059,"journal":{"name":"Nature Reviews Nephrology","volume":null,"pages":null},"PeriodicalIF":28.6000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calcium signalling and transport in the kidney\",\"authors\":\"Alexander Staruschenko, R. Todd Alexander, Michael J. Caplan, Daria V. Ilatovskaya\",\"doi\":\"10.1038/s41581-024-00835-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The kidney plays a pivotal role in regulating calcium levels within the body. Approximately 98% of the filtered calcium is reabsorbed in the nephron, and this process is tightly controlled to maintain calcium homeostasis, which is required to facilitate optimal bone mineralization, preserve serum calcium levels within a narrow range, and support intracellular signalling mechanisms. The maintenance of these functions is attributed to a delicate balance achieved by various calcium channels, transporters, and calcium-binding proteins in renal cells. Perturbation of this balance due to deficiency or dysfunction of calcium channels and calcium-binding proteins can lead to severe complications. For example, polycystic kidney disease is linked to aberrant calcium transport and signalling. Furthermore, dysregulation of calcium levels can promote the formation of kidney stones. This Review provides an updated description of the key aspects of calcium handling in the kidney, focusing on the function of various calcium channels and the physiological stimuli that control these channels or are communicated through them. A discussion of the role of calcium as an intracellular second messenger and the pathophysiology of renal calcium dysregulation, as well as a summary of gaps in knowledge and future prospects, are also included. Calcium reabsorption along the nephron is essential for calcium homeostasis and whole-body electrolyte balance. Here, Staruschenko et al. highlight signalling pathways and molecules involved in renal calcium handling in health and disease, and discuss progress in the integration of systems-level and molecular understanding of calcium transport and regulation.\",\"PeriodicalId\":19059,\"journal\":{\"name\":\"Nature Reviews Nephrology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":28.6000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Nephrology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41581-024-00835-z\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Nephrology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41581-024-00835-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
The kidney plays a pivotal role in regulating calcium levels within the body. Approximately 98% of the filtered calcium is reabsorbed in the nephron, and this process is tightly controlled to maintain calcium homeostasis, which is required to facilitate optimal bone mineralization, preserve serum calcium levels within a narrow range, and support intracellular signalling mechanisms. The maintenance of these functions is attributed to a delicate balance achieved by various calcium channels, transporters, and calcium-binding proteins in renal cells. Perturbation of this balance due to deficiency or dysfunction of calcium channels and calcium-binding proteins can lead to severe complications. For example, polycystic kidney disease is linked to aberrant calcium transport and signalling. Furthermore, dysregulation of calcium levels can promote the formation of kidney stones. This Review provides an updated description of the key aspects of calcium handling in the kidney, focusing on the function of various calcium channels and the physiological stimuli that control these channels or are communicated through them. A discussion of the role of calcium as an intracellular second messenger and the pathophysiology of renal calcium dysregulation, as well as a summary of gaps in knowledge and future prospects, are also included. Calcium reabsorption along the nephron is essential for calcium homeostasis and whole-body electrolyte balance. Here, Staruschenko et al. highlight signalling pathways and molecules involved in renal calcium handling in health and disease, and discuss progress in the integration of systems-level and molecular understanding of calcium transport and regulation.
期刊介绍:
Nature Reviews Nephrology aims to be the premier source of reviews and commentaries for the scientific communities it serves.
It strives to publish authoritative, accessible articles.
Articles are enhanced with clearly understandable figures, tables, and other display items.
Nature Reviews Nephrology publishes Research Highlights, News & Views, Comments, Reviews, Perspectives, and Consensus Statements.
The content is relevant to nephrologists and basic science researchers.
The broad scope of the journal ensures that the work reaches the widest possible audience.