Charlotte Suckert , Carolin Zosel , Michael Schaefer
{"title":"对分泌胰岛素的 INS-1 细胞浆膜下 Ca2+ 动态和颗粒融合进行同步 TIRF 成像,发现同步和非同步释放同时存在","authors":"Charlotte Suckert , Carolin Zosel , Michael Schaefer","doi":"10.1016/j.ceca.2024.102883","DOIUrl":null,"url":null,"abstract":"<div><p>The basal and glucose-induced insulin secretion from pancreatic beta cells is a tightly regulated process that is triggered in a Ca<sup>2+</sup>-dependent fashion and further positively modulated by substances that raise intracellular levels of adenosine 3′,5′-cyclic monophosphate (cAMP) or by certain antidiabetic drugs. In a previous study, we have temporally resolved the subplasmalemmal [Ca<sup>2+</sup>]<sub>i</sub> dynamics in beta cells that are characterized by trains of sharply delimited spikes, reaching peak values up to 5 µM. Applying total internal reflection fluorescence (TIRF) microscopy and synaptopHluorin to visualize fusion events of individual granules, we found that several fusion events can coincide within 50 to 150 ms. To test whether subplasmalemmal [Ca<sup>2+</sup>]<sub>i</sub> microdomains around single or clustered Ca<sup>2+</sup> channels may cause a synchronized release of insulin-containing vesicles, we applied simultaneous dual-color TIRF microscopy and monitored Ca<sup>2+</sup> fluctuations and exocytotic events in INS-1 cells at high frame rates. The results indicate that fusions can be triggered by subplasmalemmal Ca<sup>2+</sup> spiking. This, however, does account for a minority of fusion events. About 90 %-95 % of fusion events either happen between Ca<sup>2+</sup> spikes or incidentally overlap with subplasmalemmal Ca<sup>2+</sup> spikes. We conclude that only a fraction of exocytotic events in glucose-induced and tolbutamide- or forskolin-enhanced insulin release from INS-1 cells is tightly coupled to Ca<sup>2+</sup> microdomains around voltage-gated Ca<sup>2+</sup> channels.</p></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"120 ","pages":"Article 102883"},"PeriodicalIF":4.3000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0143416024000411/pdfft?md5=85c9b28c7c9d3d4d9253198eaf4bcd8d&pid=1-s2.0-S0143416024000411-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Simultaneous TIRF imaging of subplasmalemmal Ca2+ dynamics and granule fusions in insulin-secreting INS-1 cells reveals coexistent synchronized and asynchronous release\",\"authors\":\"Charlotte Suckert , Carolin Zosel , Michael Schaefer\",\"doi\":\"10.1016/j.ceca.2024.102883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The basal and glucose-induced insulin secretion from pancreatic beta cells is a tightly regulated process that is triggered in a Ca<sup>2+</sup>-dependent fashion and further positively modulated by substances that raise intracellular levels of adenosine 3′,5′-cyclic monophosphate (cAMP) or by certain antidiabetic drugs. In a previous study, we have temporally resolved the subplasmalemmal [Ca<sup>2+</sup>]<sub>i</sub> dynamics in beta cells that are characterized by trains of sharply delimited spikes, reaching peak values up to 5 µM. Applying total internal reflection fluorescence (TIRF) microscopy and synaptopHluorin to visualize fusion events of individual granules, we found that several fusion events can coincide within 50 to 150 ms. To test whether subplasmalemmal [Ca<sup>2+</sup>]<sub>i</sub> microdomains around single or clustered Ca<sup>2+</sup> channels may cause a synchronized release of insulin-containing vesicles, we applied simultaneous dual-color TIRF microscopy and monitored Ca<sup>2+</sup> fluctuations and exocytotic events in INS-1 cells at high frame rates. The results indicate that fusions can be triggered by subplasmalemmal Ca<sup>2+</sup> spiking. This, however, does account for a minority of fusion events. About 90 %-95 % of fusion events either happen between Ca<sup>2+</sup> spikes or incidentally overlap with subplasmalemmal Ca<sup>2+</sup> spikes. We conclude that only a fraction of exocytotic events in glucose-induced and tolbutamide- or forskolin-enhanced insulin release from INS-1 cells is tightly coupled to Ca<sup>2+</sup> microdomains around voltage-gated Ca<sup>2+</sup> channels.</p></div>\",\"PeriodicalId\":9678,\"journal\":{\"name\":\"Cell calcium\",\"volume\":\"120 \",\"pages\":\"Article 102883\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0143416024000411/pdfft?md5=85c9b28c7c9d3d4d9253198eaf4bcd8d&pid=1-s2.0-S0143416024000411-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell calcium\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143416024000411\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell calcium","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143416024000411","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Simultaneous TIRF imaging of subplasmalemmal Ca2+ dynamics and granule fusions in insulin-secreting INS-1 cells reveals coexistent synchronized and asynchronous release
The basal and glucose-induced insulin secretion from pancreatic beta cells is a tightly regulated process that is triggered in a Ca2+-dependent fashion and further positively modulated by substances that raise intracellular levels of adenosine 3′,5′-cyclic monophosphate (cAMP) or by certain antidiabetic drugs. In a previous study, we have temporally resolved the subplasmalemmal [Ca2+]i dynamics in beta cells that are characterized by trains of sharply delimited spikes, reaching peak values up to 5 µM. Applying total internal reflection fluorescence (TIRF) microscopy and synaptopHluorin to visualize fusion events of individual granules, we found that several fusion events can coincide within 50 to 150 ms. To test whether subplasmalemmal [Ca2+]i microdomains around single or clustered Ca2+ channels may cause a synchronized release of insulin-containing vesicles, we applied simultaneous dual-color TIRF microscopy and monitored Ca2+ fluctuations and exocytotic events in INS-1 cells at high frame rates. The results indicate that fusions can be triggered by subplasmalemmal Ca2+ spiking. This, however, does account for a minority of fusion events. About 90 %-95 % of fusion events either happen between Ca2+ spikes or incidentally overlap with subplasmalemmal Ca2+ spikes. We conclude that only a fraction of exocytotic events in glucose-induced and tolbutamide- or forskolin-enhanced insulin release from INS-1 cells is tightly coupled to Ca2+ microdomains around voltage-gated Ca2+ channels.
期刊介绍:
Cell Calcium covers the field of calcium metabolism and signalling in living systems, from aspects including inorganic chemistry, physiology, molecular biology and pathology. Topic themes include:
Roles of calcium in regulating cellular events such as apoptosis, necrosis and organelle remodelling
Influence of calcium regulation in affecting health and disease outcomes