微小的利基地形导致沟谷切口后退

IF 2.8 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL Earth Surface Processes and Landforms Pub Date : 2024-04-17 DOI:10.1002/esp.5829
Chao Wang, Chongfa Cai, Yusong Deng
{"title":"微小的利基地形导致沟谷切口后退","authors":"Chao Wang,&nbsp;Chongfa Cai,&nbsp;Yusong Deng","doi":"10.1002/esp.5829","DOIUrl":null,"url":null,"abstract":"<p>Gully erosion damages land resources and endangers human productivity and life, making it a key issue in global research on soil erosion nowadays. Gully headcut retreat (GHR) is the main form of gully erosion. Tiny concave features can be found in many retreating gully heads worldwide, and they are referred to as “niche terrain” in this study. To investigate the association between niche terrain and GHR, relevant research was reviewed on niches and stability analysis of gully heads with niches was modelled and analysed. Studies have shown that not all niches worldwide are identical due to regional differences in internal material–external environmental conditions. Special soil properties, joints, and cracks are the internal material conditions that lead to the formation of niche. External conditions include climate conditions, vegetation conditions, and topography. Water is the driving force for the formation of niche, while vegetation and topography are key factors. Niches can be regarded as the initial stage of GHR in areas where gully erosion is intense. In general, GHR is a composite cyclical process dominated by hydraulic erosion in the early stage and gravitational erosion in the late stage, including niche formation, inward concave formation, free face formation, overhanging soil collapse, and niche reformation. In this study, a model of gully head stability is applied, and it is found that the stability-based factor of safety decreases exponentially with increasing niche height and crack depth, increases exponentially with increasing niche angle, and decreases quadratically with increasing catchment slope. Summarizing the common characteristics of niche terrains worldwide can facilitate the study of the evolution of gully erosion globally.</p>","PeriodicalId":11408,"journal":{"name":"Earth Surface Processes and Landforms","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tiny niche terrain induces gully headcut retreat\",\"authors\":\"Chao Wang,&nbsp;Chongfa Cai,&nbsp;Yusong Deng\",\"doi\":\"10.1002/esp.5829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Gully erosion damages land resources and endangers human productivity and life, making it a key issue in global research on soil erosion nowadays. Gully headcut retreat (GHR) is the main form of gully erosion. Tiny concave features can be found in many retreating gully heads worldwide, and they are referred to as “niche terrain” in this study. To investigate the association between niche terrain and GHR, relevant research was reviewed on niches and stability analysis of gully heads with niches was modelled and analysed. Studies have shown that not all niches worldwide are identical due to regional differences in internal material–external environmental conditions. Special soil properties, joints, and cracks are the internal material conditions that lead to the formation of niche. External conditions include climate conditions, vegetation conditions, and topography. Water is the driving force for the formation of niche, while vegetation and topography are key factors. Niches can be regarded as the initial stage of GHR in areas where gully erosion is intense. In general, GHR is a composite cyclical process dominated by hydraulic erosion in the early stage and gravitational erosion in the late stage, including niche formation, inward concave formation, free face formation, overhanging soil collapse, and niche reformation. In this study, a model of gully head stability is applied, and it is found that the stability-based factor of safety decreases exponentially with increasing niche height and crack depth, increases exponentially with increasing niche angle, and decreases quadratically with increasing catchment slope. Summarizing the common characteristics of niche terrains worldwide can facilitate the study of the evolution of gully erosion globally.</p>\",\"PeriodicalId\":11408,\"journal\":{\"name\":\"Earth Surface Processes and Landforms\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Surface Processes and Landforms\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/esp.5829\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Surface Processes and Landforms","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/esp.5829","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

沟壑侵蚀破坏土地资源,危及人类的生产和生活,是当今全球土壤侵蚀研究的一个关键问题。沟头切退是沟蚀的主要形式。在世界范围内,许多退缩的沟头都有微小的凹陷特征,本研究将其称为 "龛状地形"。为了研究龛状地形与 GHR 之间的关联,我们查阅了有关龛状地形的相关研究,并对带有龛状地形的沟口进行了建模和稳定性分析。研究表明,由于内部材料和外部环境条件的地区差异,世界各地的壁龛并不完全相同。特殊的土壤特性、节理和裂缝是导致壁龛形成的内部材料条件。外部条件包括气候条件、植被条件和地形。水是形成岩龛的动力,而植被和地形则是关键因素。在沟谷侵蚀强烈的地区,龛位可被视为 GHR 的初始阶段。一般来说,GHR 是一个前期以水力侵蚀为主,后期以重力侵蚀为主的复合循环过程,包括岩龛形成、内凹形成、自由面形成、悬土崩塌和岩龛重塑。本研究应用了沟顶稳定性模型,发现基于稳定性的安全系数随着岩龛高度和裂缝深度的增加呈指数下降,随着岩龛角度的增加呈指数增加,随着集水坡度的增加呈二次下降。总结全球岩龛地形的共同特征有助于研究全球沟壑侵蚀的演变过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tiny niche terrain induces gully headcut retreat

Gully erosion damages land resources and endangers human productivity and life, making it a key issue in global research on soil erosion nowadays. Gully headcut retreat (GHR) is the main form of gully erosion. Tiny concave features can be found in many retreating gully heads worldwide, and they are referred to as “niche terrain” in this study. To investigate the association between niche terrain and GHR, relevant research was reviewed on niches and stability analysis of gully heads with niches was modelled and analysed. Studies have shown that not all niches worldwide are identical due to regional differences in internal material–external environmental conditions. Special soil properties, joints, and cracks are the internal material conditions that lead to the formation of niche. External conditions include climate conditions, vegetation conditions, and topography. Water is the driving force for the formation of niche, while vegetation and topography are key factors. Niches can be regarded as the initial stage of GHR in areas where gully erosion is intense. In general, GHR is a composite cyclical process dominated by hydraulic erosion in the early stage and gravitational erosion in the late stage, including niche formation, inward concave formation, free face formation, overhanging soil collapse, and niche reformation. In this study, a model of gully head stability is applied, and it is found that the stability-based factor of safety decreases exponentially with increasing niche height and crack depth, increases exponentially with increasing niche angle, and decreases quadratically with increasing catchment slope. Summarizing the common characteristics of niche terrains worldwide can facilitate the study of the evolution of gully erosion globally.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth Surface Processes and Landforms
Earth Surface Processes and Landforms 地学-地球科学综合
CiteScore
6.40
自引率
12.10%
发文量
215
审稿时长
4 months
期刊介绍: Earth Surface Processes and Landforms is an interdisciplinary international journal concerned with: the interactions between surface processes and landforms and landscapes; that lead to physical, chemical and biological changes; and which in turn create; current landscapes and the geological record of past landscapes. Its focus is core to both physical geographical and geological communities, and also the wider geosciences
期刊最新文献
Issue Information Morphology, timing, and drivers of post‐glacial landslides in the northern Yellowstone region Detailed detection and extraction of estuarine tidal channels with multispectral and full‐polarised SAR remote sensing Estimation of friction factor and bed shear stress considering bedform effect in rivers An extreme wave event in Timanfaya National Park: Possible first geological evidence of the 1755 Lisbon tsunami in Lanzarote, Canary Islands
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1