{"title":"具有 LCST 和 UCST 行为的非常规荧光和多反应聚乙烯亚胺:合成、表征和生物应用","authors":"Feng-Ming Yin, Li-Li Wu, Shu-Sheng Li, Xiao-Na Pan, Xiao-Li Zhu, Xu-Bao Jiang, Xiang Zheng Kong","doi":"10.1007/s10118-024-3120-x","DOIUrl":null,"url":null,"abstract":"<div><p>Non-aromatic fluorescent and multi-responsive materials, exhibiting inherent fluorescence emission and controlled phase change, have garnered significant attention in recent years. However, the underlying interaction between their fluorescent properties and phase transition remains unclear. In this study, we synthesized a series of catalyst-free aza-Michael addition-based polyethyleneimine (RFPEI) materials by reacting polyethyleneimine (PEI) with <i>N</i>-isopropyl acrylamide (NIPAM). The resulting RFPEI was comprehensively characterized, and demonstrated dual-phase transition behavior (LCST and UCST) in water, which could be finely tuned by adjusting its composition or external factors such as pH. Notably, upon UV irradiation (365 nm), RFPEI exhibited strong fluorescence emission. We further investigated the effects of NIPAM grafting percentage to PEI, polymer concentration, and pH on the LCST/UCST and fluorescent properties of RFPEI aqueous solutions. Moreover, we showcased the great potential of RFPEI as a versatile tool for physiological cell imaging, trace detection, and controlled release of doxorubicin. Our study presents a novel class of stimuli-responsive fluorescent materials with promising applications in the field of biomedicine.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 6","pages":"826 - 837"},"PeriodicalIF":4.1000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unconventional Fluorescent and Multi-responsive Polyethyleneimine with LCST and UCST Behavior: Synthesis, Characterization and Biological Applications\",\"authors\":\"Feng-Ming Yin, Li-Li Wu, Shu-Sheng Li, Xiao-Na Pan, Xiao-Li Zhu, Xu-Bao Jiang, Xiang Zheng Kong\",\"doi\":\"10.1007/s10118-024-3120-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Non-aromatic fluorescent and multi-responsive materials, exhibiting inherent fluorescence emission and controlled phase change, have garnered significant attention in recent years. However, the underlying interaction between their fluorescent properties and phase transition remains unclear. In this study, we synthesized a series of catalyst-free aza-Michael addition-based polyethyleneimine (RFPEI) materials by reacting polyethyleneimine (PEI) with <i>N</i>-isopropyl acrylamide (NIPAM). The resulting RFPEI was comprehensively characterized, and demonstrated dual-phase transition behavior (LCST and UCST) in water, which could be finely tuned by adjusting its composition or external factors such as pH. Notably, upon UV irradiation (365 nm), RFPEI exhibited strong fluorescence emission. We further investigated the effects of NIPAM grafting percentage to PEI, polymer concentration, and pH on the LCST/UCST and fluorescent properties of RFPEI aqueous solutions. Moreover, we showcased the great potential of RFPEI as a versatile tool for physiological cell imaging, trace detection, and controlled release of doxorubicin. Our study presents a novel class of stimuli-responsive fluorescent materials with promising applications in the field of biomedicine.</p></div>\",\"PeriodicalId\":517,\"journal\":{\"name\":\"Chinese Journal of Polymer Science\",\"volume\":\"42 6\",\"pages\":\"826 - 837\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10118-024-3120-x\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-024-3120-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Unconventional Fluorescent and Multi-responsive Polyethyleneimine with LCST and UCST Behavior: Synthesis, Characterization and Biological Applications
Non-aromatic fluorescent and multi-responsive materials, exhibiting inherent fluorescence emission and controlled phase change, have garnered significant attention in recent years. However, the underlying interaction between their fluorescent properties and phase transition remains unclear. In this study, we synthesized a series of catalyst-free aza-Michael addition-based polyethyleneimine (RFPEI) materials by reacting polyethyleneimine (PEI) with N-isopropyl acrylamide (NIPAM). The resulting RFPEI was comprehensively characterized, and demonstrated dual-phase transition behavior (LCST and UCST) in water, which could be finely tuned by adjusting its composition or external factors such as pH. Notably, upon UV irradiation (365 nm), RFPEI exhibited strong fluorescence emission. We further investigated the effects of NIPAM grafting percentage to PEI, polymer concentration, and pH on the LCST/UCST and fluorescent properties of RFPEI aqueous solutions. Moreover, we showcased the great potential of RFPEI as a versatile tool for physiological cell imaging, trace detection, and controlled release of doxorubicin. Our study presents a novel class of stimuli-responsive fluorescent materials with promising applications in the field of biomedicine.
期刊介绍:
Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985.
CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.