Zhong-bing Luo, Zhen-hao Liu, Fei-long Li, Shi-jie Jin
{"title":"利用表面自适应超声波和接收聚焦(FiR)策略对边角零件进行缺陷成像","authors":"Zhong-bing Luo, Zhen-hao Liu, Fei-long Li, Shi-jie Jin","doi":"10.1007/s10921-024-01063-y","DOIUrl":null,"url":null,"abstract":"<div><p>A weak circumferential resolution of defects in the corner part of engineering components brings great challenges to quantitative non-destructive testing. Especially for the corner of carbon fiber reinforced plastics (CFRP), the complex wave propagation behaviors caused by the elastic anisotropy, laminate structure, and curved surface make the information of defects hard to be distinguished, which finally results in a poor imaging resolution. The surface adaptive ultrasonic (SAUL) method for CFRP corner is investigated, and an improved strategy, focusing in receiving (FiR) of SAUL signals is proposed here. With an isotropic plexiglass as a comparison, the effectiveness of FiR is verified by finite element simulations and experiments. The elastic properties of CFRP corner are accurately characterized and a finite element model is established. On this basis, the wave propagation behavior in the corner is studied, and the influence of the water distance <i>h</i> on the maximum amplitude (MAD) and signal-to-noise ratio (SNR) at the defect is analyzed. The results show that the structural noise can be eliminated, and the imaging quality and SNR can be improved by optimizing the <i>h</i>. After FiR, the maximum increase of defect amplitude is about 9.5 dB and 13.2 dB for plexiglass and CFRP, respectively. Meanwhile, the maximum relative error in length is reduced by 16.7% in plexiglass, and by 13.4% for the 3-mm delamination in CFRP. The strategy would be promising to improve the detection quality of the corner in curved components.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"43 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defects Imaging in Corner Part with Surface Adaptive Ultrasonic and Focusing in Receiving (FiR) Strategy\",\"authors\":\"Zhong-bing Luo, Zhen-hao Liu, Fei-long Li, Shi-jie Jin\",\"doi\":\"10.1007/s10921-024-01063-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A weak circumferential resolution of defects in the corner part of engineering components brings great challenges to quantitative non-destructive testing. Especially for the corner of carbon fiber reinforced plastics (CFRP), the complex wave propagation behaviors caused by the elastic anisotropy, laminate structure, and curved surface make the information of defects hard to be distinguished, which finally results in a poor imaging resolution. The surface adaptive ultrasonic (SAUL) method for CFRP corner is investigated, and an improved strategy, focusing in receiving (FiR) of SAUL signals is proposed here. With an isotropic plexiglass as a comparison, the effectiveness of FiR is verified by finite element simulations and experiments. The elastic properties of CFRP corner are accurately characterized and a finite element model is established. On this basis, the wave propagation behavior in the corner is studied, and the influence of the water distance <i>h</i> on the maximum amplitude (MAD) and signal-to-noise ratio (SNR) at the defect is analyzed. The results show that the structural noise can be eliminated, and the imaging quality and SNR can be improved by optimizing the <i>h</i>. After FiR, the maximum increase of defect amplitude is about 9.5 dB and 13.2 dB for plexiglass and CFRP, respectively. Meanwhile, the maximum relative error in length is reduced by 16.7% in plexiglass, and by 13.4% for the 3-mm delamination in CFRP. The strategy would be promising to improve the detection quality of the corner in curved components.</p></div>\",\"PeriodicalId\":655,\"journal\":{\"name\":\"Journal of Nondestructive Evaluation\",\"volume\":\"43 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nondestructive Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10921-024-01063-y\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-024-01063-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
摘要
工程部件转角部位缺陷的周向分辨率较弱,这给定量无损检测带来了巨大挑战。特别是对于碳纤维增强塑料(CFRP)的转角部位,由于弹性各向异性、层状结构和曲面等原因造成的复杂波传播行为,使得缺陷信息难以分辨,最终导致成像分辨率不高。本文研究了用于 CFRP 边角的表面自适应超声波(SAUL)方法,并提出了一种改进策略,即 SAUL 信号的聚焦接收(FiR)。以各向同性的有机玻璃作为对比,通过有限元模拟和实验验证了 FiR 的有效性。对 CFRP 角的弹性特性进行了精确表征,并建立了有限元模型。在此基础上,研究了波在转角处的传播行为,并分析了水距 h 对缺陷处最大振幅 (MAD) 和信噪比 (SNR) 的影响。结果表明,通过优化水距 h 可以消除结构噪声,提高成像质量和信噪比。同时,有机玻璃的最大长度相对误差减少了 16.7%,而 CFRP 的 3 毫米分层的最大长度相对误差减少了 13.4%。该策略有望提高曲面部件的转角检测质量。
Defects Imaging in Corner Part with Surface Adaptive Ultrasonic and Focusing in Receiving (FiR) Strategy
A weak circumferential resolution of defects in the corner part of engineering components brings great challenges to quantitative non-destructive testing. Especially for the corner of carbon fiber reinforced plastics (CFRP), the complex wave propagation behaviors caused by the elastic anisotropy, laminate structure, and curved surface make the information of defects hard to be distinguished, which finally results in a poor imaging resolution. The surface adaptive ultrasonic (SAUL) method for CFRP corner is investigated, and an improved strategy, focusing in receiving (FiR) of SAUL signals is proposed here. With an isotropic plexiglass as a comparison, the effectiveness of FiR is verified by finite element simulations and experiments. The elastic properties of CFRP corner are accurately characterized and a finite element model is established. On this basis, the wave propagation behavior in the corner is studied, and the influence of the water distance h on the maximum amplitude (MAD) and signal-to-noise ratio (SNR) at the defect is analyzed. The results show that the structural noise can be eliminated, and the imaging quality and SNR can be improved by optimizing the h. After FiR, the maximum increase of defect amplitude is about 9.5 dB and 13.2 dB for plexiglass and CFRP, respectively. Meanwhile, the maximum relative error in length is reduced by 16.7% in plexiglass, and by 13.4% for the 3-mm delamination in CFRP. The strategy would be promising to improve the detection quality of the corner in curved components.
期刊介绍:
Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.