回顾潮汐问题的匹配条件:将其应用于更普遍的情况

IF 2.1 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS General Relativity and Gravitation Pub Date : 2024-04-22 DOI:10.1007/s10714-024-03237-5
Eneko Aranguren, Raül Vera
{"title":"回顾潮汐问题的匹配条件:将其应用于更普遍的情况","authors":"Eneko Aranguren, Raül Vera","doi":"10.1007/s10714-024-03237-5","DOIUrl":null,"url":null,"abstract":"<p>The tidal problem is used to obtain the tidal deformability (or Love number) of stars. The semi-analytical study is usually treated in perturbation theory as a first order perturbation problem over a spherically symmetric background configuration consisting of a stellar interior region matched across a boundary to a vacuum exterior region that models the tidal field. The field equations for the metric and matter perturbations at the interior and exterior regions are complemented with corresponding boundary conditions. The data of the two problems at the common boundary are related by the so called matching conditions. These conditions for the tidal problem are known in the contexts of perfect fluid stars and superfluid stars modelled by a two-fluid. Here we review the obtaining of the matching conditions for the tidal problem starting from a purely geometrical setting, and present them so that they can be readily applied to more general contexts, such as other types of matter fields, different multiple layers or phase transitions. As a guide on how to use the matching conditions, we recover the known results for perfect fluid and superfluid neutron stars.\n</p>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review on the matching conditions for the tidal problem: towards the application to more general contexts\",\"authors\":\"Eneko Aranguren, Raül Vera\",\"doi\":\"10.1007/s10714-024-03237-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The tidal problem is used to obtain the tidal deformability (or Love number) of stars. The semi-analytical study is usually treated in perturbation theory as a first order perturbation problem over a spherically symmetric background configuration consisting of a stellar interior region matched across a boundary to a vacuum exterior region that models the tidal field. The field equations for the metric and matter perturbations at the interior and exterior regions are complemented with corresponding boundary conditions. The data of the two problems at the common boundary are related by the so called matching conditions. These conditions for the tidal problem are known in the contexts of perfect fluid stars and superfluid stars modelled by a two-fluid. Here we review the obtaining of the matching conditions for the tidal problem starting from a purely geometrical setting, and present them so that they can be readily applied to more general contexts, such as other types of matter fields, different multiple layers or phase transitions. As a guide on how to use the matching conditions, we recover the known results for perfect fluid and superfluid neutron stars.\\n</p>\",\"PeriodicalId\":578,\"journal\":{\"name\":\"General Relativity and Gravitation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Relativity and Gravitation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s10714-024-03237-5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s10714-024-03237-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

潮汐问题用于获得恒星的潮汐变形能力(或爱数)。半解析研究通常在扰动理论中处理为球面对称背景构型上的一阶扰动问题,该背景构型由恒星内部区域与模拟潮汐场的真空外部区域的边界相匹配组成。内部和外部区域的度量和物质扰动场方程与相应的边界条件相辅相成。两个问题在共同边界上的数据通过所谓的匹配条件相关联。潮汐问题的这些条件在完全流体恒星和以双流体为模型的超流体恒星中是已知的。在这里,我们从纯粹的几何背景出发,回顾了潮汐问题匹配条件的获得过程,并介绍了这些条件,以便它们可以很容易地应用于更普遍的情况,如其他类型的物质场、不同的多层或相变。作为如何使用匹配条件的指南,我们恢复了完美流体和超流体中子星的已知结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Review on the matching conditions for the tidal problem: towards the application to more general contexts

The tidal problem is used to obtain the tidal deformability (or Love number) of stars. The semi-analytical study is usually treated in perturbation theory as a first order perturbation problem over a spherically symmetric background configuration consisting of a stellar interior region matched across a boundary to a vacuum exterior region that models the tidal field. The field equations for the metric and matter perturbations at the interior and exterior regions are complemented with corresponding boundary conditions. The data of the two problems at the common boundary are related by the so called matching conditions. These conditions for the tidal problem are known in the contexts of perfect fluid stars and superfluid stars modelled by a two-fluid. Here we review the obtaining of the matching conditions for the tidal problem starting from a purely geometrical setting, and present them so that they can be readily applied to more general contexts, such as other types of matter fields, different multiple layers or phase transitions. As a guide on how to use the matching conditions, we recover the known results for perfect fluid and superfluid neutron stars.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
General Relativity and Gravitation
General Relativity and Gravitation 物理-天文与天体物理
CiteScore
4.60
自引率
3.60%
发文量
136
审稿时长
3 months
期刊介绍: General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation. It welcomes in particular original articles on the following topics of current research: Analytical general relativity, including its interface with geometrical analysis Numerical relativity Theoretical and observational cosmology Relativistic astrophysics Gravitational waves: data analysis, astrophysical sources and detector science Extensions of general relativity Supergravity Gravitational aspects of string theory and its extensions Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations Quantum field theory in curved spacetime Non-commutative geometry and gravitation Experimental gravity, in particular tests of general relativity The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.
期刊最新文献
Localized chaos due to rotating shock waves in Kerr–AdS black holes and their ultraspinning version Elementary considerations on gravitational waves from hyperbolic encounters Approximating photon trajectories in spherically symmetric spacetimes Exponential correction to Friedmann equations Some remarks on Bardeen-AdS black hole surrounded by a fluid of strings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1