Hong-Ye Hu , Li-Jia Xie , Lin He , Piao-Piao Wu , Kang-Qiang Lu , Kai Yang , Dan Li , Wei-Ya Huang
{"title":"构建基于金属硫化物的 S 型异质结以实现高效光催化反应:最新进展小评","authors":"Hong-Ye Hu , Li-Jia Xie , Lin He , Piao-Piao Wu , Kang-Qiang Lu , Kai Yang , Dan Li , Wei-Ya Huang","doi":"10.1016/j.coche.2024.101021","DOIUrl":null,"url":null,"abstract":"<div><p>Metal sulfides (MSs) have been explored extensively as promising semiconductors for photocatalytic applications in pollutant degradation, CO<sub>2</sub> reduction, and H<sub>2</sub> production. However, pure MSs suffer from several drawbacks, especially rapid electron–hole recombination. The construction of S-scheme heterojunctions has been recommended as one of effective strategies to improve charge separation and transfer, as well as to retain high redox potential electrons and holes to participate in reaction. This paper reviewed recent advances on the construction of MS-based S-scheme heterojunctions with high photocatalytic performances. In particular, various design and construction approaches, including integration with other semiconductors, microstructure control, and interface modulation, were covered along with mechanisms governing the boosted photocatalytic performances. The challenges and prospects in the research about MS-based S-scheme heterojunctions were discussed finally, providing our insight on future research.</p></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"44 ","pages":"Article 101021"},"PeriodicalIF":8.0000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing metal sulfide-based S-scheme heterojunctions for efficient photocatalytic reaction: a mini review of recent advances\",\"authors\":\"Hong-Ye Hu , Li-Jia Xie , Lin He , Piao-Piao Wu , Kang-Qiang Lu , Kai Yang , Dan Li , Wei-Ya Huang\",\"doi\":\"10.1016/j.coche.2024.101021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metal sulfides (MSs) have been explored extensively as promising semiconductors for photocatalytic applications in pollutant degradation, CO<sub>2</sub> reduction, and H<sub>2</sub> production. However, pure MSs suffer from several drawbacks, especially rapid electron–hole recombination. The construction of S-scheme heterojunctions has been recommended as one of effective strategies to improve charge separation and transfer, as well as to retain high redox potential electrons and holes to participate in reaction. This paper reviewed recent advances on the construction of MS-based S-scheme heterojunctions with high photocatalytic performances. In particular, various design and construction approaches, including integration with other semiconductors, microstructure control, and interface modulation, were covered along with mechanisms governing the boosted photocatalytic performances. The challenges and prospects in the research about MS-based S-scheme heterojunctions were discussed finally, providing our insight on future research.</p></div>\",\"PeriodicalId\":292,\"journal\":{\"name\":\"Current Opinion in Chemical Engineering\",\"volume\":\"44 \",\"pages\":\"Article 101021\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211339824000224\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339824000224","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
金属硫化物(MSs)作为一种有前途的半导体材料,在污染物降解、二氧化碳还原和 H2 生产等光催化应用领域得到了广泛的探索。然而,纯硫化物有几个缺点,尤其是电子-空穴快速重组。构建 S 型异质结已被推荐为改善电荷分离和转移以及保留高氧化还原电位电子和空穴参与反应的有效策略之一。本文综述了构建具有高光催化性能的基于 MS 的 S 型异质结的最新进展。特别是介绍了各种设计和构造方法,包括与其他半导体的集成、微结构控制和界面调制,以及提高光催化性能的机理。最后还讨论了基于 MS 的 S 型异质结研究面临的挑战和前景,为今后的研究提供了启示。
Constructing metal sulfide-based S-scheme heterojunctions for efficient photocatalytic reaction: a mini review of recent advances
Metal sulfides (MSs) have been explored extensively as promising semiconductors for photocatalytic applications in pollutant degradation, CO2 reduction, and H2 production. However, pure MSs suffer from several drawbacks, especially rapid electron–hole recombination. The construction of S-scheme heterojunctions has been recommended as one of effective strategies to improve charge separation and transfer, as well as to retain high redox potential electrons and holes to participate in reaction. This paper reviewed recent advances on the construction of MS-based S-scheme heterojunctions with high photocatalytic performances. In particular, various design and construction approaches, including integration with other semiconductors, microstructure control, and interface modulation, were covered along with mechanisms governing the boosted photocatalytic performances. The challenges and prospects in the research about MS-based S-scheme heterojunctions were discussed finally, providing our insight on future research.
期刊介绍:
Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published.
The goals of each review article in Current Opinion in Chemical Engineering are:
1. To acquaint the reader/researcher with the most important recent papers in the given topic.
2. To provide the reader with the views/opinions of the expert in each topic.
The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts.
Themed sections:
Each review will focus on particular aspects of one of the following themed sections of chemical engineering:
1. Nanotechnology
2. Energy and environmental engineering
3. Biotechnology and bioprocess engineering
4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery)
5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.)
6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials).
7. Process systems engineering
8. Reaction engineering and catalysis.