从钒渣焙烧产品中浸出、分离和回收钒的综述

IF 4.8 2区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING Hydrometallurgy Pub Date : 2024-04-18 DOI:10.1016/j.hydromet.2024.106313
Changqing Li , Tao Jiang , Jing Wen , Tangxia Yu , Feifei Li
{"title":"从钒渣焙烧产品中浸出、分离和回收钒的综述","authors":"Changqing Li ,&nbsp;Tao Jiang ,&nbsp;Jing Wen ,&nbsp;Tangxia Yu ,&nbsp;Feifei Li","doi":"10.1016/j.hydromet.2024.106313","DOIUrl":null,"url":null,"abstract":"<div><p>Vanadium is a strategic metal with extensive applications in steel production and emerging energy technologies. In vanadium metallurgy, the pivotal steps encompass the roasting of vanadium slag, leaching, and precipitation of vanadium. The roasting process, which involves elements such as sodium, calcium, manganese, and magnesium, facilitates the phase transformation and extraction of vanadium. Considering the phase separation behavior of vanadium-enriched phases (MV<sub>2</sub>O<sub>6</sub>, MV<sub>2</sub>O<sub>7</sub>, or MV<sub>2</sub>O<sub>8</sub>) in various leaching media, including acid, alkali, and water, the wet decomposition of these phases can be classified into two categories: (i) those yielding insoluble M and soluble V and (ii) those resulting in both soluble M and V. Thermodynamically, the reaction equilibrium constants and temperature profiles of the vanadium-rich phases in various acid and alkaline decomposition processes were calculated and juxtaposed. This review also reports the limiting factors of leaching kinetics of vanadium-rich phases in acid and alkaline decomposition processes, particularly the separation and transformation of vanadium-rich phases in calcified vanadium slag. The vanadium precipitation process encompasses a detailed elaboration of the mechanisms behind the precipitation of hydrolyzed vanadium product and ammonium‑vanadium product. Finally, the vanadium slag roasting-leaching‑vanadium precipitation process was evaluated from four aspects: principle, laboratory and plant practice, resource and environment, and cost and benefit.</p></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"226 ","pages":"Article 106313"},"PeriodicalIF":4.8000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review of leaching, separation and recovery of vanadium from roasted products of vanadium slag\",\"authors\":\"Changqing Li ,&nbsp;Tao Jiang ,&nbsp;Jing Wen ,&nbsp;Tangxia Yu ,&nbsp;Feifei Li\",\"doi\":\"10.1016/j.hydromet.2024.106313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vanadium is a strategic metal with extensive applications in steel production and emerging energy technologies. In vanadium metallurgy, the pivotal steps encompass the roasting of vanadium slag, leaching, and precipitation of vanadium. The roasting process, which involves elements such as sodium, calcium, manganese, and magnesium, facilitates the phase transformation and extraction of vanadium. Considering the phase separation behavior of vanadium-enriched phases (MV<sub>2</sub>O<sub>6</sub>, MV<sub>2</sub>O<sub>7</sub>, or MV<sub>2</sub>O<sub>8</sub>) in various leaching media, including acid, alkali, and water, the wet decomposition of these phases can be classified into two categories: (i) those yielding insoluble M and soluble V and (ii) those resulting in both soluble M and V. Thermodynamically, the reaction equilibrium constants and temperature profiles of the vanadium-rich phases in various acid and alkaline decomposition processes were calculated and juxtaposed. This review also reports the limiting factors of leaching kinetics of vanadium-rich phases in acid and alkaline decomposition processes, particularly the separation and transformation of vanadium-rich phases in calcified vanadium slag. The vanadium precipitation process encompasses a detailed elaboration of the mechanisms behind the precipitation of hydrolyzed vanadium product and ammonium‑vanadium product. Finally, the vanadium slag roasting-leaching‑vanadium precipitation process was evaluated from four aspects: principle, laboratory and plant practice, resource and environment, and cost and benefit.</p></div>\",\"PeriodicalId\":13193,\"journal\":{\"name\":\"Hydrometallurgy\",\"volume\":\"226 \",\"pages\":\"Article 106313\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrometallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304386X24000537\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X24000537","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

钒是一种战略金属,广泛应用于钢铁生产和新兴能源技术。钒冶金的关键步骤包括钒渣焙烧、浸出和钒沉淀。焙烧过程涉及钠、钙、锰和镁等元素,有利于钒的相变和提取。考虑到富钒相(MVO、MVO 或 MVO)在各种浸出介质(包括酸、碱和水)中的相分离行为,这些相的湿分解可分为两类:(i) 产生不溶性 M 和可溶性 V 的相,以及 (ii) 同时产生可溶性 M 和 V 的相。本综述还报告了酸性和碱性分解过程中富钒相浸出动力学的限制因素,特别是钙化钒渣中富钒相的分离和转化。钒沉淀过程详细阐述了水解钒产物和铵钒产物的沉淀机理。最后,从原理、实验室和工厂实践、资源和环境、成本和效益四个方面对钒渣焙烧-浸出-钒沉淀工艺进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Review of leaching, separation and recovery of vanadium from roasted products of vanadium slag

Vanadium is a strategic metal with extensive applications in steel production and emerging energy technologies. In vanadium metallurgy, the pivotal steps encompass the roasting of vanadium slag, leaching, and precipitation of vanadium. The roasting process, which involves elements such as sodium, calcium, manganese, and magnesium, facilitates the phase transformation and extraction of vanadium. Considering the phase separation behavior of vanadium-enriched phases (MV2O6, MV2O7, or MV2O8) in various leaching media, including acid, alkali, and water, the wet decomposition of these phases can be classified into two categories: (i) those yielding insoluble M and soluble V and (ii) those resulting in both soluble M and V. Thermodynamically, the reaction equilibrium constants and temperature profiles of the vanadium-rich phases in various acid and alkaline decomposition processes were calculated and juxtaposed. This review also reports the limiting factors of leaching kinetics of vanadium-rich phases in acid and alkaline decomposition processes, particularly the separation and transformation of vanadium-rich phases in calcified vanadium slag. The vanadium precipitation process encompasses a detailed elaboration of the mechanisms behind the precipitation of hydrolyzed vanadium product and ammonium‑vanadium product. Finally, the vanadium slag roasting-leaching‑vanadium precipitation process was evaluated from four aspects: principle, laboratory and plant practice, resource and environment, and cost and benefit.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hydrometallurgy
Hydrometallurgy 工程技术-冶金工程
CiteScore
9.50
自引率
6.40%
发文量
144
审稿时长
3.4 months
期刊介绍: Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties. Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.
期刊最新文献
Preparation of high-purity iron oxide from end-of-life NdFeB magnet waste Efficient separation and recovery of cobalt from grinding waste of cemented carbide using a sulfuric acid-sodium persulfate mixed solution Separation of cerium from solution by oxidative precipitation with hydrogen peroxide: The reaction mechanism Phase evolution and elemental distribution of zinc and germanium during the sulfide roasting, zinc fuming and leaching processes: Benefit of pretreating zinc oxide dust Technological advancements in rare earth elements recovery from ionic clays: A comprehensive review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1