使用基础模型的可靠燃烧科学知识处理框架

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Energy and AI Pub Date : 2024-04-18 DOI:10.1016/j.egyai.2024.100365
Vansh Sharma, Venkat Raman
{"title":"使用基础模型的可靠燃烧科学知识处理框架","authors":"Vansh Sharma,&nbsp;Venkat Raman","doi":"10.1016/j.egyai.2024.100365","DOIUrl":null,"url":null,"abstract":"<div><p>This research explores the integration of large language models (LLMs) into scientific data assimilation, focusing on combustion science as a case study. Leveraging foundational models integrated with Retrieval-Augmented Generation (RAG) framework, the study introduces an approach to process diverse combustion research data, spanning experimental studies, simulations, and literature. The multifaceted nature of combustion research emphasizes the critical role of knowledge processing in navigating and extracting valuable information from a vast and diverse pool of sources. The developed approach minimizes computational and economic expenses while optimizing data privacy and accuracy. It incorporates prompt engineering and offline open-source LLMs, offering user autonomy in selecting base models. The study provides a thorough examination of text segmentation strategies, conducts comparative studies between LLMs, and explores various optimized prompts to demonstrate the effectiveness of the framework. By incorporating an external vector database, the framework outperforms a conventional LLM in generating accurate responses and constructing robust arguments. Additionally, the study delves into the investigation of optimized prompt templates for the purpose of efficient extraction of scientific literature. Furthermore, we present a targeted scaling study to quantify the algorithmic performance of the framework as the number of prompt tokens increases. The research addresses concerns related to hallucinations and false research articles by introducing a custom workflow developed with a detection algorithm to filter out inaccuracies. Despite identified areas for improvement, the framework consistently delivers accurate domain-specific responses with minimal human oversight. The prompt-agnostic approach introduced holds promise for future improvements. The study underscores the significance of integrating LLMs and knowledge processing techniques in scientific research, providing a foundation for advancements in data assimilation and utilization.</p></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"16 ","pages":"Article 100365"},"PeriodicalIF":9.6000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666546824000314/pdfft?md5=253c1bc638957975ef44ed9f22b35270&pid=1-s2.0-S2666546824000314-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A reliable knowledge processing framework for combustion science using foundation models\",\"authors\":\"Vansh Sharma,&nbsp;Venkat Raman\",\"doi\":\"10.1016/j.egyai.2024.100365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research explores the integration of large language models (LLMs) into scientific data assimilation, focusing on combustion science as a case study. Leveraging foundational models integrated with Retrieval-Augmented Generation (RAG) framework, the study introduces an approach to process diverse combustion research data, spanning experimental studies, simulations, and literature. The multifaceted nature of combustion research emphasizes the critical role of knowledge processing in navigating and extracting valuable information from a vast and diverse pool of sources. The developed approach minimizes computational and economic expenses while optimizing data privacy and accuracy. It incorporates prompt engineering and offline open-source LLMs, offering user autonomy in selecting base models. The study provides a thorough examination of text segmentation strategies, conducts comparative studies between LLMs, and explores various optimized prompts to demonstrate the effectiveness of the framework. By incorporating an external vector database, the framework outperforms a conventional LLM in generating accurate responses and constructing robust arguments. Additionally, the study delves into the investigation of optimized prompt templates for the purpose of efficient extraction of scientific literature. Furthermore, we present a targeted scaling study to quantify the algorithmic performance of the framework as the number of prompt tokens increases. The research addresses concerns related to hallucinations and false research articles by introducing a custom workflow developed with a detection algorithm to filter out inaccuracies. Despite identified areas for improvement, the framework consistently delivers accurate domain-specific responses with minimal human oversight. The prompt-agnostic approach introduced holds promise for future improvements. The study underscores the significance of integrating LLMs and knowledge processing techniques in scientific research, providing a foundation for advancements in data assimilation and utilization.</p></div>\",\"PeriodicalId\":34138,\"journal\":{\"name\":\"Energy and AI\",\"volume\":\"16 \",\"pages\":\"Article 100365\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666546824000314/pdfft?md5=253c1bc638957975ef44ed9f22b35270&pid=1-s2.0-S2666546824000314-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666546824000314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546824000314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了将大型语言模型(LLM)整合到科学数据同化中的问题,并以燃烧科学作为案例研究的重点。该研究利用集成了检索-增强生成(RAG)框架的基础模型,介绍了一种处理各种燃烧研究数据的方法,其中包括实验研究、模拟和文献。燃烧研究的多面性强调了知识处理在导航和从大量不同来源中提取有价值信息方面的关键作用。所开发的方法在优化数据隐私和准确性的同时,最大限度地减少了计算和经济支出。它结合了提示工程和离线开源 LLM,让用户可以自主选择基础模型。本研究全面考察了文本分割策略,对 LLM 进行了比较研究,并探索了各种优化提示,以证明该框架的有效性。通过整合外部向量数据库,该框架在生成准确回复和构建稳健论据方面优于传统的 LLM。此外,本研究还深入探讨了优化提示模板,以实现高效提取科学文献的目的。此外,我们还提出了一项有针对性的扩展研究,以量化该框架在提示标记数量增加时的算法性能。这项研究通过引入一个使用检测算法开发的自定义工作流程来过滤不准确的信息,从而解决了与幻觉和虚假研究文章相关的问题。尽管发现了需要改进的地方,但该框架始终能提供准确的特定领域回复,只需极少的人工监督。所采用的 "提示-识别 "方法为未来的改进带来了希望。这项研究强调了在科学研究中整合 LLM 和知识处理技术的重要性,为数据同化和利用方面的进步奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A reliable knowledge processing framework for combustion science using foundation models

This research explores the integration of large language models (LLMs) into scientific data assimilation, focusing on combustion science as a case study. Leveraging foundational models integrated with Retrieval-Augmented Generation (RAG) framework, the study introduces an approach to process diverse combustion research data, spanning experimental studies, simulations, and literature. The multifaceted nature of combustion research emphasizes the critical role of knowledge processing in navigating and extracting valuable information from a vast and diverse pool of sources. The developed approach minimizes computational and economic expenses while optimizing data privacy and accuracy. It incorporates prompt engineering and offline open-source LLMs, offering user autonomy in selecting base models. The study provides a thorough examination of text segmentation strategies, conducts comparative studies between LLMs, and explores various optimized prompts to demonstrate the effectiveness of the framework. By incorporating an external vector database, the framework outperforms a conventional LLM in generating accurate responses and constructing robust arguments. Additionally, the study delves into the investigation of optimized prompt templates for the purpose of efficient extraction of scientific literature. Furthermore, we present a targeted scaling study to quantify the algorithmic performance of the framework as the number of prompt tokens increases. The research addresses concerns related to hallucinations and false research articles by introducing a custom workflow developed with a detection algorithm to filter out inaccuracies. Despite identified areas for improvement, the framework consistently delivers accurate domain-specific responses with minimal human oversight. The prompt-agnostic approach introduced holds promise for future improvements. The study underscores the significance of integrating LLMs and knowledge processing techniques in scientific research, providing a foundation for advancements in data assimilation and utilization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
期刊最新文献
Neural network potential-based molecular investigation of thermal decomposition mechanisms of ethylene and ammonia Machine learning for battery quality classification and lifetime prediction using formation data Enhancing PV feed-in power forecasting through federated learning with differential privacy using LSTM and GRU Real-world validation of safe reinforcement learning, model predictive control and decision tree-based home energy management systems Decentralized coordination of distributed energy resources through local energy markets and deep reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1