{"title":"墨西哥湾西北部亚热带海草草甸的甲烷排放动态","authors":"Hao Yu, Richard Coffin, Hannah Organ","doi":"10.1007/s10533-024-01138-y","DOIUrl":null,"url":null,"abstract":"<div><p>While seagrass meadows are perceived to be pertinent blue carbon reservoirs, they also potentially release methane (CH<sub>4</sub>) into the atmosphere. Seasonal and diurnal variations in CH<sub>4</sub> emissions from a subtropical hypersaline lagoon dominated by <i>Halodule wrightii</i> in southern Texas, USA, on the northwest coast of the Gulf of Mexico were investigated. Dissolved CH<sub>4</sub> concentrations decreased in the daytime and increased overnight during the diel observation period, which could be explained by photosynthesis and respiration of seagrasses. Photosynthetic oxygen was found to significantly reduce CH<sub>4</sub> emissions from seagrass sediment. Diffusive transport contributed slightly to the release of CH<sub>4</sub> from the sediment to the water column, while plant mediation might be the primary mechanism. The diffusive CH<sub>4</sub> flux at the sea-air interface was 12.3–816.2 µmol/m<sup>2</sup> d, over the range of the sea-air fluxes previously reported from other seagrass meadows. This was related to relatively higher dissolved CH<sub>4</sub> concentrations (11.6–258.2 nmol/L) in a mostly closed lagoon with restricted water exchange. This study emphasizes seagrass meadows in the subtropical hypersaline lagoon as a source of atmospheric CH<sub>4</sub>, providing insights into the interactions between seagrass ecosystems and methane dynamics, with potential implications for seagrass meadow management and conservation efforts.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01138-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Dynamics of methane emissions from northwestern Gulf of Mexico subtropical seagrass meadows\",\"authors\":\"Hao Yu, Richard Coffin, Hannah Organ\",\"doi\":\"10.1007/s10533-024-01138-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>While seagrass meadows are perceived to be pertinent blue carbon reservoirs, they also potentially release methane (CH<sub>4</sub>) into the atmosphere. Seasonal and diurnal variations in CH<sub>4</sub> emissions from a subtropical hypersaline lagoon dominated by <i>Halodule wrightii</i> in southern Texas, USA, on the northwest coast of the Gulf of Mexico were investigated. Dissolved CH<sub>4</sub> concentrations decreased in the daytime and increased overnight during the diel observation period, which could be explained by photosynthesis and respiration of seagrasses. Photosynthetic oxygen was found to significantly reduce CH<sub>4</sub> emissions from seagrass sediment. Diffusive transport contributed slightly to the release of CH<sub>4</sub> from the sediment to the water column, while plant mediation might be the primary mechanism. The diffusive CH<sub>4</sub> flux at the sea-air interface was 12.3–816.2 µmol/m<sup>2</sup> d, over the range of the sea-air fluxes previously reported from other seagrass meadows. This was related to relatively higher dissolved CH<sub>4</sub> concentrations (11.6–258.2 nmol/L) in a mostly closed lagoon with restricted water exchange. This study emphasizes seagrass meadows in the subtropical hypersaline lagoon as a source of atmospheric CH<sub>4</sub>, providing insights into the interactions between seagrass ecosystems and methane dynamics, with potential implications for seagrass meadow management and conservation efforts.</p></div>\",\"PeriodicalId\":8901,\"journal\":{\"name\":\"Biogeochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10533-024-01138-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biogeochemistry\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10533-024-01138-y\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeochemistry","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10533-024-01138-y","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Dynamics of methane emissions from northwestern Gulf of Mexico subtropical seagrass meadows
While seagrass meadows are perceived to be pertinent blue carbon reservoirs, they also potentially release methane (CH4) into the atmosphere. Seasonal and diurnal variations in CH4 emissions from a subtropical hypersaline lagoon dominated by Halodule wrightii in southern Texas, USA, on the northwest coast of the Gulf of Mexico were investigated. Dissolved CH4 concentrations decreased in the daytime and increased overnight during the diel observation period, which could be explained by photosynthesis and respiration of seagrasses. Photosynthetic oxygen was found to significantly reduce CH4 emissions from seagrass sediment. Diffusive transport contributed slightly to the release of CH4 from the sediment to the water column, while plant mediation might be the primary mechanism. The diffusive CH4 flux at the sea-air interface was 12.3–816.2 µmol/m2 d, over the range of the sea-air fluxes previously reported from other seagrass meadows. This was related to relatively higher dissolved CH4 concentrations (11.6–258.2 nmol/L) in a mostly closed lagoon with restricted water exchange. This study emphasizes seagrass meadows in the subtropical hypersaline lagoon as a source of atmospheric CH4, providing insights into the interactions between seagrass ecosystems and methane dynamics, with potential implications for seagrass meadow management and conservation efforts.
期刊介绍:
Biogeochemistry publishes original and synthetic papers dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems. Cycles are considered, either of individual elements or of specific classes of natural or anthropogenic compounds in ecosystems. Particular emphasis is given to coupled interactions of element cycles. The journal spans from the molecular to global scales to elucidate the mechanisms driving patterns in biogeochemical cycles through space and time. Studies on both natural and artificial ecosystems are published when they contribute to a general understanding of biogeochemistry.