量子硬件上的动态优化:流程工业用例的可行性

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2024-04-24 DOI:10.1016/j.compchemeng.2024.108704
Dennis M. Nenno, Adrian Caspari
{"title":"量子硬件上的动态优化:流程工业用例的可行性","authors":"Dennis M. Nenno,&nbsp;Adrian Caspari","doi":"10.1016/j.compchemeng.2024.108704","DOIUrl":null,"url":null,"abstract":"<div><p>The quest for real-time dynamic optimization solutions in the process industry represents a formidable computational challenge, particularly within the realm of applications like model-predictive control, where rapid and reliable computations are critical. Conventional methods can struggle to surmount the complexities of such tasks. Quantum computing and quantum annealing emerge as <em>avant-garde</em> contenders to transcend conventional computational constraints. We convert a dynamic optimization problem, characterized by an optimization problem with a system of differential–algebraic equations embedded, into a Quadratic Unconstrained Binary Optimization problem, enabling quantum computational approaches. The empirical findings synthesized from classical methods, simulated annealing, quantum annealing via D-Wave’s quantum annealer, and hybrid solver methodologies, illuminate the intricate landscape of computational prowess essential for tackling complex and high-dimensional dynamic optimization problems. Our findings suggest that while quantum annealing is a maturing technology that currently does not outperform state-of-the-art classical solvers, continuous improvements could eventually aid in increasing efficiency within the chemical process industry.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic optimization on quantum hardware: Feasibility for a process industry use case\",\"authors\":\"Dennis M. Nenno,&nbsp;Adrian Caspari\",\"doi\":\"10.1016/j.compchemeng.2024.108704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The quest for real-time dynamic optimization solutions in the process industry represents a formidable computational challenge, particularly within the realm of applications like model-predictive control, where rapid and reliable computations are critical. Conventional methods can struggle to surmount the complexities of such tasks. Quantum computing and quantum annealing emerge as <em>avant-garde</em> contenders to transcend conventional computational constraints. We convert a dynamic optimization problem, characterized by an optimization problem with a system of differential–algebraic equations embedded, into a Quadratic Unconstrained Binary Optimization problem, enabling quantum computational approaches. The empirical findings synthesized from classical methods, simulated annealing, quantum annealing via D-Wave’s quantum annealer, and hybrid solver methodologies, illuminate the intricate landscape of computational prowess essential for tackling complex and high-dimensional dynamic optimization problems. Our findings suggest that while quantum annealing is a maturing technology that currently does not outperform state-of-the-art classical solvers, continuous improvements could eventually aid in increasing efficiency within the chemical process industry.</p></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135424001224\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424001224","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

流程工业对实时动态优化解决方案的追求是一项艰巨的计算挑战,特别是在模型预测控制等应用领域,快速可靠的计算至关重要。传统方法难以克服此类任务的复杂性。量子计算和量子退火是超越传统计算限制的前卫竞争者。我们将一个动态优化问题(其特点是优化问题中嵌入了微分代数方程系统)转换为二次无约束二元优化问题,使量子计算方法成为可能。从经典方法、模拟退火、通过 D-Wave 的量子退火器进行的量子退火以及混合求解器方法中综合得出的经验性发现,揭示了处理复杂和高维动态优化问题所必需的计算能力的复杂面貌。我们的研究结果表明,虽然量子退火是一项日趋成熟的技术,目前还无法超越最先进的经典求解器,但不断改进终将有助于提高化学工艺行业的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic optimization on quantum hardware: Feasibility for a process industry use case

The quest for real-time dynamic optimization solutions in the process industry represents a formidable computational challenge, particularly within the realm of applications like model-predictive control, where rapid and reliable computations are critical. Conventional methods can struggle to surmount the complexities of such tasks. Quantum computing and quantum annealing emerge as avant-garde contenders to transcend conventional computational constraints. We convert a dynamic optimization problem, characterized by an optimization problem with a system of differential–algebraic equations embedded, into a Quadratic Unconstrained Binary Optimization problem, enabling quantum computational approaches. The empirical findings synthesized from classical methods, simulated annealing, quantum annealing via D-Wave’s quantum annealer, and hybrid solver methodologies, illuminate the intricate landscape of computational prowess essential for tackling complex and high-dimensional dynamic optimization problems. Our findings suggest that while quantum annealing is a maturing technology that currently does not outperform state-of-the-art classical solvers, continuous improvements could eventually aid in increasing efficiency within the chemical process industry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
Integrating smart manufacturing techniques into undergraduate education: A case study with heat exchanger Semi-supervised regression based on Representation Learning for fermentation processes On speeding-up modifier-adaptation schemes for real-time optimization Machine learning-based input-augmented Koopman modeling and predictive control of nonlinear processes Resilience-based explainable reinforcement learning in chemical process safety
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1