增强超立方体的拉宾数

IF 3.4 3区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Journal of Parallel and Distributed Computing Pub Date : 2024-04-24 DOI:10.1016/j.jpdc.2024.104905
Chaoming Guo , Meijie Ma , Xiang-Jun Li , Guijuan Wang
{"title":"增强超立方体的拉宾数","authors":"Chaoming Guo ,&nbsp;Meijie Ma ,&nbsp;Xiang-Jun Li ,&nbsp;Guijuan Wang","doi":"10.1016/j.jpdc.2024.104905","DOIUrl":null,"url":null,"abstract":"<div><p>The <em>ω</em>-Rabin number <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and strong <em>ω</em>-Rabin number <span><math><msubsup><mrow><mi>r</mi></mrow><mrow><mi>ω</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> are two effective parameters to assess transmission latency and fault tolerance of an interconnection network <em>G</em>. As determining the Rabin number of a general graph is NP-complete, we consider the Rabin number of the enhanced hypercube <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span> which is a variant of the hypercube <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. For <span><math><mi>n</mi><mo>≥</mo><mi>k</mi><mo>≥</mo><mn>5</mn></math></span>, we prove that <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo><mo>=</mo><msubsup><mrow><mi>r</mi></mrow><mrow><mi>ω</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>d</mi><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo></math></span> for <span><math><mn>1</mn><mo>≤</mo><mi>ω</mi><mo>&lt;</mo><mi>n</mi><mo>−</mo><mo>⌊</mo><mfrac><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></math></span>; <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo><mo>=</mo><msubsup><mrow><mi>r</mi></mrow><mrow><mi>ω</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>d</mi><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo><mo>+</mo><mn>1</mn></math></span> for <span><math><mi>n</mi><mo>−</mo><mo>⌊</mo><mfrac><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo><mo>≤</mo><mi>ω</mi><mo>≤</mo><mi>n</mi><mo>+</mo><mn>1</mn></math></span>, where <span><math><mi>d</mi><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo></math></span> is the diameter of <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span>. In addition, we present algorithms to construct internally disjoint paths of length at most <span><math><msup><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>ω</mi></mrow></msub></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo></math></span> from a source vertex to other <em>ω</em> (<span><math><mn>1</mn><mo>≤</mo><mi>ω</mi><mo>≤</mo><mi>n</mi><mo>+</mo><mn>1</mn></math></span>) destination vertices (not necessarily distinct) in <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span>.</p></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Rabin numbers of enhanced hypercubes\",\"authors\":\"Chaoming Guo ,&nbsp;Meijie Ma ,&nbsp;Xiang-Jun Li ,&nbsp;Guijuan Wang\",\"doi\":\"10.1016/j.jpdc.2024.104905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The <em>ω</em>-Rabin number <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and strong <em>ω</em>-Rabin number <span><math><msubsup><mrow><mi>r</mi></mrow><mrow><mi>ω</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> are two effective parameters to assess transmission latency and fault tolerance of an interconnection network <em>G</em>. As determining the Rabin number of a general graph is NP-complete, we consider the Rabin number of the enhanced hypercube <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span> which is a variant of the hypercube <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. For <span><math><mi>n</mi><mo>≥</mo><mi>k</mi><mo>≥</mo><mn>5</mn></math></span>, we prove that <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo><mo>=</mo><msubsup><mrow><mi>r</mi></mrow><mrow><mi>ω</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>d</mi><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo></math></span> for <span><math><mn>1</mn><mo>≤</mo><mi>ω</mi><mo>&lt;</mo><mi>n</mi><mo>−</mo><mo>⌊</mo><mfrac><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></math></span>; <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo><mo>=</mo><msubsup><mrow><mi>r</mi></mrow><mrow><mi>ω</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>d</mi><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo><mo>+</mo><mn>1</mn></math></span> for <span><math><mi>n</mi><mo>−</mo><mo>⌊</mo><mfrac><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo><mo>≤</mo><mi>ω</mi><mo>≤</mo><mi>n</mi><mo>+</mo><mn>1</mn></math></span>, where <span><math><mi>d</mi><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo></math></span> is the diameter of <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span>. In addition, we present algorithms to construct internally disjoint paths of length at most <span><math><msup><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>ω</mi></mrow></msub></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo></math></span> from a source vertex to other <em>ω</em> (<span><math><mn>1</mn><mo>≤</mo><mi>ω</mi><mo>≤</mo><mi>n</mi><mo>+</mo><mn>1</mn></math></span>) destination vertices (not necessarily distinct) in <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span>.</p></div>\",\"PeriodicalId\":54775,\"journal\":{\"name\":\"Journal of Parallel and Distributed Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Parallel and Distributed Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0743731524000698\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731524000698","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

ω-拉宾数rω(G)和强ω-拉宾数rω⁎(G)是评估互连网络G的传输延迟和容错性的两个有效参数。由于确定一般图的拉宾数是NP-完全的,我们考虑了增强超立方体Qn,k的拉宾数,它是超立方体Qn的一个变体。对于 n≥k≥5,我们证明了在 1≤ω<n-⌊k2⌋ 时,rω(Qn,k)=rω⁎(Qn,k)=d(Qn,k);在 n-⌊k2⌋≤ω≤n+1 时,rω(Qn,k)=rω⁎(Qn,k)=d(Qn,k)+1,其中 d(Qn,k) 是 Qn,k 的直径。此外,我们还提出了一些算法,用于构建从一个源顶点到 Qn,k 中其他 ω (1≤ω≤n+1) 个目的顶点(不一定不同)的长度最多为 rω⁎(Qn,k)的内部不相交路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Rabin numbers of enhanced hypercubes

The ω-Rabin number rω(G) and strong ω-Rabin number rω(G) are two effective parameters to assess transmission latency and fault tolerance of an interconnection network G. As determining the Rabin number of a general graph is NP-complete, we consider the Rabin number of the enhanced hypercube Qn,k which is a variant of the hypercube Qn. For nk5, we prove that rω(Qn,k)=rω(Qn,k)=d(Qn,k) for 1ω<nk2; rω(Qn,k)=rω(Qn,k)=d(Qn,k)+1 for nk2ωn+1, where d(Qn,k) is the diameter of Qn,k. In addition, we present algorithms to construct internally disjoint paths of length at most rω(Qn,k) from a source vertex to other ω (1ωn+1) destination vertices (not necessarily distinct) in Qn,k.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Parallel and Distributed Computing
Journal of Parallel and Distributed Computing 工程技术-计算机:理论方法
CiteScore
10.30
自引率
2.60%
发文量
172
审稿时长
12 months
期刊介绍: This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing. The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.
期刊最新文献
SpEpistasis: A sparse approach for three-way epistasis detection Robust and Scalable Federated Learning Framework for Client Data Heterogeneity Based on Optimal Clustering Editorial Board Front Matter 1 - Full Title Page (regular issues)/Special Issue Title page (special issues) Survey of federated learning in intrusion detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1