Chaoming Guo , Meijie Ma , Xiang-Jun Li , Guijuan Wang
{"title":"增强超立方体的拉宾数","authors":"Chaoming Guo , Meijie Ma , Xiang-Jun Li , Guijuan Wang","doi":"10.1016/j.jpdc.2024.104905","DOIUrl":null,"url":null,"abstract":"<div><p>The <em>ω</em>-Rabin number <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and strong <em>ω</em>-Rabin number <span><math><msubsup><mrow><mi>r</mi></mrow><mrow><mi>ω</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> are two effective parameters to assess transmission latency and fault tolerance of an interconnection network <em>G</em>. As determining the Rabin number of a general graph is NP-complete, we consider the Rabin number of the enhanced hypercube <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span> which is a variant of the hypercube <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. For <span><math><mi>n</mi><mo>≥</mo><mi>k</mi><mo>≥</mo><mn>5</mn></math></span>, we prove that <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo><mo>=</mo><msubsup><mrow><mi>r</mi></mrow><mrow><mi>ω</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>d</mi><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo></math></span> for <span><math><mn>1</mn><mo>≤</mo><mi>ω</mi><mo><</mo><mi>n</mi><mo>−</mo><mo>⌊</mo><mfrac><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></math></span>; <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo><mo>=</mo><msubsup><mrow><mi>r</mi></mrow><mrow><mi>ω</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>d</mi><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo><mo>+</mo><mn>1</mn></math></span> for <span><math><mi>n</mi><mo>−</mo><mo>⌊</mo><mfrac><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo><mo>≤</mo><mi>ω</mi><mo>≤</mo><mi>n</mi><mo>+</mo><mn>1</mn></math></span>, where <span><math><mi>d</mi><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo></math></span> is the diameter of <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span>. In addition, we present algorithms to construct internally disjoint paths of length at most <span><math><msup><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>ω</mi></mrow></msub></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo></math></span> from a source vertex to other <em>ω</em> (<span><math><mn>1</mn><mo>≤</mo><mi>ω</mi><mo>≤</mo><mi>n</mi><mo>+</mo><mn>1</mn></math></span>) destination vertices (not necessarily distinct) in <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span>.</p></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":"191 ","pages":"Article 104905"},"PeriodicalIF":3.4000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Rabin numbers of enhanced hypercubes\",\"authors\":\"Chaoming Guo , Meijie Ma , Xiang-Jun Li , Guijuan Wang\",\"doi\":\"10.1016/j.jpdc.2024.104905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The <em>ω</em>-Rabin number <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and strong <em>ω</em>-Rabin number <span><math><msubsup><mrow><mi>r</mi></mrow><mrow><mi>ω</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> are two effective parameters to assess transmission latency and fault tolerance of an interconnection network <em>G</em>. As determining the Rabin number of a general graph is NP-complete, we consider the Rabin number of the enhanced hypercube <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span> which is a variant of the hypercube <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. For <span><math><mi>n</mi><mo>≥</mo><mi>k</mi><mo>≥</mo><mn>5</mn></math></span>, we prove that <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo><mo>=</mo><msubsup><mrow><mi>r</mi></mrow><mrow><mi>ω</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>d</mi><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo></math></span> for <span><math><mn>1</mn><mo>≤</mo><mi>ω</mi><mo><</mo><mi>n</mi><mo>−</mo><mo>⌊</mo><mfrac><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></math></span>; <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo><mo>=</mo><msubsup><mrow><mi>r</mi></mrow><mrow><mi>ω</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>d</mi><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo><mo>+</mo><mn>1</mn></math></span> for <span><math><mi>n</mi><mo>−</mo><mo>⌊</mo><mfrac><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo><mo>≤</mo><mi>ω</mi><mo>≤</mo><mi>n</mi><mo>+</mo><mn>1</mn></math></span>, where <span><math><mi>d</mi><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo></math></span> is the diameter of <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span>. In addition, we present algorithms to construct internally disjoint paths of length at most <span><math><msup><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>ω</mi></mrow></msub></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>)</mo></math></span> from a source vertex to other <em>ω</em> (<span><math><mn>1</mn><mo>≤</mo><mi>ω</mi><mo>≤</mo><mi>n</mi><mo>+</mo><mn>1</mn></math></span>) destination vertices (not necessarily distinct) in <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span>.</p></div>\",\"PeriodicalId\":54775,\"journal\":{\"name\":\"Journal of Parallel and Distributed Computing\",\"volume\":\"191 \",\"pages\":\"Article 104905\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Parallel and Distributed Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0743731524000698\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731524000698","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
The ω-Rabin number and strong ω-Rabin number are two effective parameters to assess transmission latency and fault tolerance of an interconnection network G. As determining the Rabin number of a general graph is NP-complete, we consider the Rabin number of the enhanced hypercube which is a variant of the hypercube . For , we prove that for ; for , where is the diameter of . In addition, we present algorithms to construct internally disjoint paths of length at most from a source vertex to other ω () destination vertices (not necessarily distinct) in .
期刊介绍:
This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing.
The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.