{"title":"基于修正不确定性和干扰估计器的控制的鲁棒性、性能分析和实际改进","authors":"Zhuo Chen , Yong-Sheng Hao , Li Sun","doi":"10.1016/j.conengprac.2024.105966","DOIUrl":null,"url":null,"abstract":"<div><p>Modified uncertainty and disturbance estimator (MUDE) based control shows great control performance and robustness against unexpected dynamics in the presence of time delay. However, there are still some problems that have not been analyzed theoretically but actually hinder its further applications, such as noise amplification and control signal fluctuations under delay mismatch. On the other hand, the trade-off between robustness and control performance is still a critical issue in MUDE based controller design. However, some doubts arise when extending the single-loop sensitivity function analysis method to MUDE (multi-loop) control systems. To this end, this paper comprehensively analyzes the performance of MUDE, including control performance and robustness, and proposes some practical improvements to address its issues (denoted as IUDE). An ambiguity in analysis of sensitivity functions for multi-loop control systems is first clarified. Then, based on the two-degree-of-freedom equivalent control structure and sensitivity functions, the control performance and robustness of the MUDE based control system are analyzed in detail, including noise sensitivity and control signal response. Finally, some practical improvements are proposed and a quantitative tuning rule is also derived to facilitate its application. Simulation results show that the proposed control method effectively mitigates the problems of noise amplification and control signal fluctuation while almost not degrading the control performance. Water-tank control experiments have also been performed to validate the efficacy of the proposed method, which depicts a promising prospect in control practice.</p></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robustness, performance analysis and practical improvements of modified uncertainty and disturbance estimator based control\",\"authors\":\"Zhuo Chen , Yong-Sheng Hao , Li Sun\",\"doi\":\"10.1016/j.conengprac.2024.105966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Modified uncertainty and disturbance estimator (MUDE) based control shows great control performance and robustness against unexpected dynamics in the presence of time delay. However, there are still some problems that have not been analyzed theoretically but actually hinder its further applications, such as noise amplification and control signal fluctuations under delay mismatch. On the other hand, the trade-off between robustness and control performance is still a critical issue in MUDE based controller design. However, some doubts arise when extending the single-loop sensitivity function analysis method to MUDE (multi-loop) control systems. To this end, this paper comprehensively analyzes the performance of MUDE, including control performance and robustness, and proposes some practical improvements to address its issues (denoted as IUDE). An ambiguity in analysis of sensitivity functions for multi-loop control systems is first clarified. Then, based on the two-degree-of-freedom equivalent control structure and sensitivity functions, the control performance and robustness of the MUDE based control system are analyzed in detail, including noise sensitivity and control signal response. Finally, some practical improvements are proposed and a quantitative tuning rule is also derived to facilitate its application. Simulation results show that the proposed control method effectively mitigates the problems of noise amplification and control signal fluctuation while almost not degrading the control performance. Water-tank control experiments have also been performed to validate the efficacy of the proposed method, which depicts a promising prospect in control practice.</p></div>\",\"PeriodicalId\":50615,\"journal\":{\"name\":\"Control Engineering Practice\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control Engineering Practice\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967066124001266\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124001266","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Robustness, performance analysis and practical improvements of modified uncertainty and disturbance estimator based control
Modified uncertainty and disturbance estimator (MUDE) based control shows great control performance and robustness against unexpected dynamics in the presence of time delay. However, there are still some problems that have not been analyzed theoretically but actually hinder its further applications, such as noise amplification and control signal fluctuations under delay mismatch. On the other hand, the trade-off between robustness and control performance is still a critical issue in MUDE based controller design. However, some doubts arise when extending the single-loop sensitivity function analysis method to MUDE (multi-loop) control systems. To this end, this paper comprehensively analyzes the performance of MUDE, including control performance and robustness, and proposes some practical improvements to address its issues (denoted as IUDE). An ambiguity in analysis of sensitivity functions for multi-loop control systems is first clarified. Then, based on the two-degree-of-freedom equivalent control structure and sensitivity functions, the control performance and robustness of the MUDE based control system are analyzed in detail, including noise sensitivity and control signal response. Finally, some practical improvements are proposed and a quantitative tuning rule is also derived to facilitate its application. Simulation results show that the proposed control method effectively mitigates the problems of noise amplification and control signal fluctuation while almost not degrading the control performance. Water-tank control experiments have also been performed to validate the efficacy of the proposed method, which depicts a promising prospect in control practice.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.