{"title":"超低 RIN、低阈值 AlGaInAs/InP BH-DFB 激光器","authors":"jianhua Ren","doi":"10.1051/jeos/2024023","DOIUrl":null,"url":null,"abstract":"This study presents a comparative analysis of DFB lasers based on AlGaInAs/InP heterostructures, exploring the impact of different groove shapes and cavity lengths on laser output characteristics. Leveraging the vertical groove structure, we achieved a remarkable laser output of 90mW at 25°C. Compared to lasers without grooves, this represents a 3.6-fold increase in output power, coupled with an impressively low threshold current of only 4mA. In addition, we conducted a study on the temperature stability of the laser, revealing that even at elevated temperatures of 85°C, the laser maintains an edge mode suppression ratio of over 45dB. This demonstrates the robustness and reliability of the laser over a wide range of operating conditions, further enhancing its suitability for practical applications in diverse environments. Upon packaging the chip into a butterfly shape, we observed a significant reduction in relative intensity noise, with values below -162.8 dB/Hz across the frequency range of 0-40 GHz, while operating at an output power of 3mW. These findings underscore the robustness, reliability, and high-performance capabilities of the developed DFB laser, highlighting its potential for various practical applications.","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra low RIN, low threshold AlGaInAs/InP BH-DFB laser\",\"authors\":\"jianhua Ren\",\"doi\":\"10.1051/jeos/2024023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a comparative analysis of DFB lasers based on AlGaInAs/InP heterostructures, exploring the impact of different groove shapes and cavity lengths on laser output characteristics. Leveraging the vertical groove structure, we achieved a remarkable laser output of 90mW at 25°C. Compared to lasers without grooves, this represents a 3.6-fold increase in output power, coupled with an impressively low threshold current of only 4mA. In addition, we conducted a study on the temperature stability of the laser, revealing that even at elevated temperatures of 85°C, the laser maintains an edge mode suppression ratio of over 45dB. This demonstrates the robustness and reliability of the laser over a wide range of operating conditions, further enhancing its suitability for practical applications in diverse environments. Upon packaging the chip into a butterfly shape, we observed a significant reduction in relative intensity noise, with values below -162.8 dB/Hz across the frequency range of 0-40 GHz, while operating at an output power of 3mW. These findings underscore the robustness, reliability, and high-performance capabilities of the developed DFB laser, highlighting its potential for various practical applications.\",\"PeriodicalId\":674,\"journal\":{\"name\":\"Journal of the European Optical Society-Rapid Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the European Optical Society-Rapid Publications\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://doi.org/10.1051/jeos/2024023\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1051/jeos/2024023","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
This study presents a comparative analysis of DFB lasers based on AlGaInAs/InP heterostructures, exploring the impact of different groove shapes and cavity lengths on laser output characteristics. Leveraging the vertical groove structure, we achieved a remarkable laser output of 90mW at 25°C. Compared to lasers without grooves, this represents a 3.6-fold increase in output power, coupled with an impressively low threshold current of only 4mA. In addition, we conducted a study on the temperature stability of the laser, revealing that even at elevated temperatures of 85°C, the laser maintains an edge mode suppression ratio of over 45dB. This demonstrates the robustness and reliability of the laser over a wide range of operating conditions, further enhancing its suitability for practical applications in diverse environments. Upon packaging the chip into a butterfly shape, we observed a significant reduction in relative intensity noise, with values below -162.8 dB/Hz across the frequency range of 0-40 GHz, while operating at an output power of 3mW. These findings underscore the robustness, reliability, and high-performance capabilities of the developed DFB laser, highlighting its potential for various practical applications.
期刊介绍:
Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry.
Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research.
The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics.
The journal covers both fundamental and applied topics, including but not limited to:
Classical and quantum optics
Light/matter interaction
Optical communication
Micro- and nanooptics
Nonlinear optical phenomena
Optical materials
Optical metrology
Optical spectroscopy
Colour research
Nano and metamaterials
Modern photonics technology
Optical engineering, design and instrumentation
Optical applications in bio-physics and medicine
Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage
The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.