摄入的微塑料可作为鱼类的微生物载体

Abdulhusein Jawdhari, György Deák, D. Mihăilescu, N. Crăciun, A. Staicu, Ioana Stanca, Derniza Cozorici, S. Fendrihan, C. Pop, M. Mernea
{"title":"摄入的微塑料可作为鱼类的微生物载体","authors":"Abdulhusein Jawdhari, György Deák, D. Mihăilescu, N. Crăciun, A. Staicu, Ioana Stanca, Derniza Cozorici, S. Fendrihan, C. Pop, M. Mernea","doi":"10.3390/microbiolres15020040","DOIUrl":null,"url":null,"abstract":"Microplastics (plastic particles < 5 mm) are ubiquitous pollutants that have the ability to carry microbiota, including pathogens. Microbial adhesion is usually a sign of pathogenicity; thus, we investigated the adherent microbiota found on 4 mm nylon strips, which were ingested and excreted by wild fish specimens. Retention times were recorded and the polymer analysis of the excreted samples was performed, which showed no signs of degradation, nor did their controls, represented by the nylon strips submerged in the same water tanks. Both the ingested samples and controls presented pathogens in large quantities. Following Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight identification, the dominant genus was represented by Aeromonas, revealing the fact that nylon microplastics can serve as undegradable physical carriers for this pathogen, among others, in the aquatic environment.","PeriodicalId":506564,"journal":{"name":"Microbiology Research","volume":"112 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ingested Microplastics Can Act as Microbial Vectors of Ichthyofauna\",\"authors\":\"Abdulhusein Jawdhari, György Deák, D. Mihăilescu, N. Crăciun, A. Staicu, Ioana Stanca, Derniza Cozorici, S. Fendrihan, C. Pop, M. Mernea\",\"doi\":\"10.3390/microbiolres15020040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microplastics (plastic particles < 5 mm) are ubiquitous pollutants that have the ability to carry microbiota, including pathogens. Microbial adhesion is usually a sign of pathogenicity; thus, we investigated the adherent microbiota found on 4 mm nylon strips, which were ingested and excreted by wild fish specimens. Retention times were recorded and the polymer analysis of the excreted samples was performed, which showed no signs of degradation, nor did their controls, represented by the nylon strips submerged in the same water tanks. Both the ingested samples and controls presented pathogens in large quantities. Following Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight identification, the dominant genus was represented by Aeromonas, revealing the fact that nylon microplastics can serve as undegradable physical carriers for this pathogen, among others, in the aquatic environment.\",\"PeriodicalId\":506564,\"journal\":{\"name\":\"Microbiology Research\",\"volume\":\"112 23\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/microbiolres15020040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/microbiolres15020040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微塑料(小于 5 毫米的塑料颗粒)是无处不在的污染物,能够携带微生物群,包括病原体。微生物粘附通常是致病性的标志;因此,我们对野生鱼类标本摄入和排出的 4 毫米尼龙条上发现的粘附微生物群进行了调查。我们记录了样本的滞留时间,并对排泄样本进行了聚合物分析,结果显示样本没有降解迹象,对照样本(即浸没在相同水槽中的尼龙条)也没有降解迹象。摄入的样品和对照组都含有大量病原体。经过基质辅助激光解吸/电离飞行时间鉴定,主要的病原体属是气单胞菌,这表明尼龙微塑料在水生环境中可以作为这种病原体的不可降解的物理载体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ingested Microplastics Can Act as Microbial Vectors of Ichthyofauna
Microplastics (plastic particles < 5 mm) are ubiquitous pollutants that have the ability to carry microbiota, including pathogens. Microbial adhesion is usually a sign of pathogenicity; thus, we investigated the adherent microbiota found on 4 mm nylon strips, which were ingested and excreted by wild fish specimens. Retention times were recorded and the polymer analysis of the excreted samples was performed, which showed no signs of degradation, nor did their controls, represented by the nylon strips submerged in the same water tanks. Both the ingested samples and controls presented pathogens in large quantities. Following Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight identification, the dominant genus was represented by Aeromonas, revealing the fact that nylon microplastics can serve as undegradable physical carriers for this pathogen, among others, in the aquatic environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Germination and Culturability after UV Irradiation of Metarhizium anisopliae Native from Soils of Tropical Cattle Farms IL-26 Increases Sensing of Borrelia burgdorferi DNA by Human Toll-like Receptor 9 Exploring the Antimicrobial and Probiotic Potential of Microorganisms Derived from Kazakh Dairy Products In Vitro and In Vivo Wide-Spectrum Dual Antimycetomal Activity of Eight Essential Oils Coupled with Chemical Composition and Metabolomic Profiling Exploring the Antibacterial Potential of Bile Salts: Inhibition of Biofilm Formation and Cell Growth in Pseudomonas aeruginosa and Staphylococcus aureus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1