Ivana Cvijović-Alagić, Slađana Laketić, Miloš Momčilović, Jovan Ciganović, Jelena Bajat, Vesna Kojić
{"title":"微结构和表面改性对 Ti-45Nb 合金对生物环境反应的影响","authors":"Ivana Cvijović-Alagić, Slađana Laketić, Miloš Momčilović, Jovan Ciganović, Jelena Bajat, Vesna Kojić","doi":"10.1007/s40195-024-01705-0","DOIUrl":null,"url":null,"abstract":"<div><p>The Ti-45Nb (mass%) alloy’s corrosive and biocompatible response in simulated physiological conditions was investigated before and after its additional high-pressure torsion (HPT) and laser irradiation processing. The grain size reduction from 2.76 µm to ~ 200 nm and the appearance of laser-induced morphologically altered and highly oxidized surface led to the significant improvement of alloy corrosion resistance and cell–implant interaction. Moreover, an additional increase of the laser pulse energy from 5 to 15 mJ during the alloy irradiation in the air led to an increase in the surface oxygen content from 13.64 to 23.89% accompanied by an increase of excellent cell viability from 127.18 to 134.42%. As a result of the controlled alloy microstructural and surface modifications, the formation of protective bi-modal mixed Ti- and Nb-oxide external scale was enabled. The presence of this surface oxide scale enhanced the alloy’s resistance to corrosion deterioration and simultaneously boosted cell viability and proliferation.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"37 7","pages":"1215 - 1230"},"PeriodicalIF":2.9000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Microstructural and Surface Modifications on the Ti-45Nb Alloy’s Response to Bio-Environment\",\"authors\":\"Ivana Cvijović-Alagić, Slađana Laketić, Miloš Momčilović, Jovan Ciganović, Jelena Bajat, Vesna Kojić\",\"doi\":\"10.1007/s40195-024-01705-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Ti-45Nb (mass%) alloy’s corrosive and biocompatible response in simulated physiological conditions was investigated before and after its additional high-pressure torsion (HPT) and laser irradiation processing. The grain size reduction from 2.76 µm to ~ 200 nm and the appearance of laser-induced morphologically altered and highly oxidized surface led to the significant improvement of alloy corrosion resistance and cell–implant interaction. Moreover, an additional increase of the laser pulse energy from 5 to 15 mJ during the alloy irradiation in the air led to an increase in the surface oxygen content from 13.64 to 23.89% accompanied by an increase of excellent cell viability from 127.18 to 134.42%. As a result of the controlled alloy microstructural and surface modifications, the formation of protective bi-modal mixed Ti- and Nb-oxide external scale was enabled. The presence of this surface oxide scale enhanced the alloy’s resistance to corrosion deterioration and simultaneously boosted cell viability and proliferation.</p></div>\",\"PeriodicalId\":457,\"journal\":{\"name\":\"Acta Metallurgica Sinica-English Letters\",\"volume\":\"37 7\",\"pages\":\"1215 - 1230\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Metallurgica Sinica-English Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40195-024-01705-0\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s40195-024-01705-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Impact of Microstructural and Surface Modifications on the Ti-45Nb Alloy’s Response to Bio-Environment
The Ti-45Nb (mass%) alloy’s corrosive and biocompatible response in simulated physiological conditions was investigated before and after its additional high-pressure torsion (HPT) and laser irradiation processing. The grain size reduction from 2.76 µm to ~ 200 nm and the appearance of laser-induced morphologically altered and highly oxidized surface led to the significant improvement of alloy corrosion resistance and cell–implant interaction. Moreover, an additional increase of the laser pulse energy from 5 to 15 mJ during the alloy irradiation in the air led to an increase in the surface oxygen content from 13.64 to 23.89% accompanied by an increase of excellent cell viability from 127.18 to 134.42%. As a result of the controlled alloy microstructural and surface modifications, the formation of protective bi-modal mixed Ti- and Nb-oxide external scale was enabled. The presence of this surface oxide scale enhanced the alloy’s resistance to corrosion deterioration and simultaneously boosted cell viability and proliferation.
期刊介绍:
This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.