P. P. Giacomoni, M. Masotta, G. Delpech, G. Lanzafame, C. Ferlito, J. Villeneuve, M. Coltorti
{"title":"埃特纳火山托勒密岩浆和碱性岩浆中橄榄石包裹体的地球化学和挥发物含量","authors":"P. P. Giacomoni, M. Masotta, G. Delpech, G. Lanzafame, C. Ferlito, J. Villeneuve, M. Coltorti","doi":"10.1007/s00410-024-02116-1","DOIUrl":null,"url":null,"abstract":"<div><p>The analysis of olivine-hosted melt inclusions (MIs) from the whole sub-alkaline and alkaline magmatic suites of Mt. Etna provides fundamental information about the composition of undifferentiated magmas and their pristine volatile content. Olivine crystals (Fo<sub>88-66</sub>) were selected for Secondary Ion Mass Spectrometry (SIMS) analysis of volatile species (H<sub>2</sub>O, CO<sub>2</sub>, F, Cl and S) contained in their host MIs, after preliminary high-pressure/high-temperature re-homogenization, which allowed to reduce the developing of cracks in the host olivine and diffusion-driven outgassing of volatiles from the melt inclusions. This permitted to explore the compositional variability of volatiles of undifferentiated melts and the degassing behavior through the feeding system. The studied MIs show significant major elements compositional heterogeneities (44.57–52.37 wt% SiO<sub>2</sub>; 3.60–7.51 wt% Na<sub>2</sub>O + K<sub>2</sub>O). Fractionation modelling was performed with Rhyolite-MELTs under variable <i>f</i>O<sub>2</sub> regimes (∆FMQ + 1.5 to + 3), starting from the less evolved MIs compositions and ultimately reproducing most of the observed compositional trends. Mantle melting modelling was used to replicate the observed MIs composition, starting from a spinel-lherzolitic source, accounting for the alkalinity and Fe content of reproduced melts by varying the eutectic contribution of Amph/Phlog and Opx/Cpx respectively. Although most of the studied MIs were degassed in an open-conduit regime, the observed range of volatile concentration in MIs (2.42–6.14 wt% H<sub>2</sub>O; 308–8474 ppm CO<sub>2</sub>; 132–697 ppm F; 221–1766 ppm Cl and 16–1992 ppm S) is correlated with a slight decrease in the molar H<sub>2</sub>O/(H<sub>2</sub>O + CO<sub>2</sub>) ratio from early tholeiites to the recent 2015 alkaline products. This observation allows to estimate a minimum 12,250 ppm CO<sub>2</sub> and a maximum of 6.14 wt% H<sub>2</sub>O in primary melts of the current activity.</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"179 5","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00410-024-02116-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Geochemistry and volatile contents of olivine-hosted melt inclusions from Mt. Etna tholeiitic and alkaline magmatism\",\"authors\":\"P. P. Giacomoni, M. Masotta, G. Delpech, G. Lanzafame, C. Ferlito, J. Villeneuve, M. Coltorti\",\"doi\":\"10.1007/s00410-024-02116-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The analysis of olivine-hosted melt inclusions (MIs) from the whole sub-alkaline and alkaline magmatic suites of Mt. Etna provides fundamental information about the composition of undifferentiated magmas and their pristine volatile content. Olivine crystals (Fo<sub>88-66</sub>) were selected for Secondary Ion Mass Spectrometry (SIMS) analysis of volatile species (H<sub>2</sub>O, CO<sub>2</sub>, F, Cl and S) contained in their host MIs, after preliminary high-pressure/high-temperature re-homogenization, which allowed to reduce the developing of cracks in the host olivine and diffusion-driven outgassing of volatiles from the melt inclusions. This permitted to explore the compositional variability of volatiles of undifferentiated melts and the degassing behavior through the feeding system. The studied MIs show significant major elements compositional heterogeneities (44.57–52.37 wt% SiO<sub>2</sub>; 3.60–7.51 wt% Na<sub>2</sub>O + K<sub>2</sub>O). Fractionation modelling was performed with Rhyolite-MELTs under variable <i>f</i>O<sub>2</sub> regimes (∆FMQ + 1.5 to + 3), starting from the less evolved MIs compositions and ultimately reproducing most of the observed compositional trends. Mantle melting modelling was used to replicate the observed MIs composition, starting from a spinel-lherzolitic source, accounting for the alkalinity and Fe content of reproduced melts by varying the eutectic contribution of Amph/Phlog and Opx/Cpx respectively. Although most of the studied MIs were degassed in an open-conduit regime, the observed range of volatile concentration in MIs (2.42–6.14 wt% H<sub>2</sub>O; 308–8474 ppm CO<sub>2</sub>; 132–697 ppm F; 221–1766 ppm Cl and 16–1992 ppm S) is correlated with a slight decrease in the molar H<sub>2</sub>O/(H<sub>2</sub>O + CO<sub>2</sub>) ratio from early tholeiites to the recent 2015 alkaline products. This observation allows to estimate a minimum 12,250 ppm CO<sub>2</sub> and a maximum of 6.14 wt% H<sub>2</sub>O in primary melts of the current activity.</p></div>\",\"PeriodicalId\":526,\"journal\":{\"name\":\"Contributions to Mineralogy and Petrology\",\"volume\":\"179 5\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00410-024-02116-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions to Mineralogy and Petrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00410-024-02116-1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00410-024-02116-1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Geochemistry and volatile contents of olivine-hosted melt inclusions from Mt. Etna tholeiitic and alkaline magmatism
The analysis of olivine-hosted melt inclusions (MIs) from the whole sub-alkaline and alkaline magmatic suites of Mt. Etna provides fundamental information about the composition of undifferentiated magmas and their pristine volatile content. Olivine crystals (Fo88-66) were selected for Secondary Ion Mass Spectrometry (SIMS) analysis of volatile species (H2O, CO2, F, Cl and S) contained in their host MIs, after preliminary high-pressure/high-temperature re-homogenization, which allowed to reduce the developing of cracks in the host olivine and diffusion-driven outgassing of volatiles from the melt inclusions. This permitted to explore the compositional variability of volatiles of undifferentiated melts and the degassing behavior through the feeding system. The studied MIs show significant major elements compositional heterogeneities (44.57–52.37 wt% SiO2; 3.60–7.51 wt% Na2O + K2O). Fractionation modelling was performed with Rhyolite-MELTs under variable fO2 regimes (∆FMQ + 1.5 to + 3), starting from the less evolved MIs compositions and ultimately reproducing most of the observed compositional trends. Mantle melting modelling was used to replicate the observed MIs composition, starting from a spinel-lherzolitic source, accounting for the alkalinity and Fe content of reproduced melts by varying the eutectic contribution of Amph/Phlog and Opx/Cpx respectively. Although most of the studied MIs were degassed in an open-conduit regime, the observed range of volatile concentration in MIs (2.42–6.14 wt% H2O; 308–8474 ppm CO2; 132–697 ppm F; 221–1766 ppm Cl and 16–1992 ppm S) is correlated with a slight decrease in the molar H2O/(H2O + CO2) ratio from early tholeiites to the recent 2015 alkaline products. This observation allows to estimate a minimum 12,250 ppm CO2 and a maximum of 6.14 wt% H2O in primary melts of the current activity.
期刊介绍:
Contributions to Mineralogy and Petrology is an international journal that accepts high quality research papers in the fields of igneous and metamorphic petrology, geochemistry and mineralogy.
Topics of interest include: major element, trace element and isotope geochemistry, geochronology, experimental petrology, igneous and metamorphic petrology, mineralogy, major and trace element mineral chemistry and thermodynamic modeling of petrologic and geochemical processes.