Yuxiang Zhu, Lianxun Wang, Yuanming Pan, Changqian Ma, Zhenbing She
{"title":"岩浆和热液过程中铌的再富集和富集:从中国南秦岭富铌堤群中的榍石得出的启示","authors":"Yuxiang Zhu, Lianxun Wang, Yuanming Pan, Changqian Ma, Zhenbing She","doi":"10.1007/s00410-024-02120-5","DOIUrl":null,"url":null,"abstract":"<div><p>Giant Nb deposits hosted by alkaline igneous rocks worldwide are characterized by hydrothermal and/or metamorphic modifications after magmatic crystallization. However, the impact of secondary processes on Nb mineralization in alkaline igneous rocks remains controversial. In this study, U–Pb ages, elemental, and Nd isotope compositions of titanite from a series of Nb-rich dyke swarms in the Ziyang region of South Qinling (China) have been investigated to unveil Nb remobilization and enrichment histories during magmatic and hydrothermal processes. Three types of titanite are documented: magmatic, deuteric, and hydrothermal. The magmatic titanite (Ttn I) grains are euhedral wedge-shaped, while the deuteric type (Ttn II) occurs as coronas on magmatic ilmenite. The hydrothermal titanite (Ttn III) occurs as either bead-like clusters within the cleavage planes of chloritized biotite or as anhedral grains (lesser than 200 <i>μ</i>m in diameter) coexisting with hydrothermal actinolite, chlorite, fluorite, and/or REE-rich oxides. The magmatic titanite grains from the most primitive igneous rocks have U–Pb ages of 455 ± 25 Ma and are characterized by high levels of Nb<sub>2</sub>O<sub>5</sub> (up to 1.4 wt%) and other high field strength elements (HFSE, up to 1.3 wt% ZrO<sub>2</sub>), rare earth elements (REE), and V, and high mean crystallization temperatures (880 ± 40 °C), suggesting that they nucleated and crystallized in a high-<i>T</i> and Nb-rich alkaline magma during the Early Paleozoic. The gradual decrease in V, Sr, and Ba in Ttn I from mafic to intermediate dykes exemplifies the role of fractionation on magmatic enrichment of Nb (mean of 170 ppm and 7300 ppm for Ttn I in mafic and intermediate dykes, respectively) and other incompatible elements (e.g., Ta, Zr, Hf, Sn, Y, and REE) in the residual melt. The deuteric and hydrothermal types of titanites in each lithology have lower concentrations of HFSE (e.g., Nb mean of 140 ppm and 860 ppm for Ttn II in mafic and intermediate dykes, respectively), Sn, LREE, and Y but higher Al, F, V, Sr, and HREE contents than their magmatic counterpart. The deuteric and hydrothermal types of titanite have U–Pb ages of 420 ± 25 Ma and 232 ± 49 Ma, respectively, supporting two distinct hydrothermal events at Ziyang. The magmatic and deuteric types of titanite have similar ranges of εNd(t) values (+ 1.4 to + 3.5 and + 2 to + 4.2, respectively), indicative of a common source for these two generations. The hydrothermal titanite also has comparable εNd(t) values (+ 0.8 to + 2.7) to the magmatic and deuteric types, indicating a minimal external contribution to Nd (and by analogy Nb as well) from the late hydrothermal fluids. The deuteric and late hydrothermal F-rich fluids in Ziyang dyke swarms both remobilized the dispersed Nb in magmatic ilmenite, amphibole, and biotite to form secondary titanite (Ttn II, III), which is beneficial to the metallurgical extraction of this critical metal. Therefore, both magmatic fractional crystallization and hydrothermal remobilization contributed to Nb mineralization.</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"179 5","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remobilization and enrichment of Nb during magmatic and hydrothermal processes: insights from titanite in Nb-rich dyke swarms of South Qinling, China\",\"authors\":\"Yuxiang Zhu, Lianxun Wang, Yuanming Pan, Changqian Ma, Zhenbing She\",\"doi\":\"10.1007/s00410-024-02120-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Giant Nb deposits hosted by alkaline igneous rocks worldwide are characterized by hydrothermal and/or metamorphic modifications after magmatic crystallization. However, the impact of secondary processes on Nb mineralization in alkaline igneous rocks remains controversial. In this study, U–Pb ages, elemental, and Nd isotope compositions of titanite from a series of Nb-rich dyke swarms in the Ziyang region of South Qinling (China) have been investigated to unveil Nb remobilization and enrichment histories during magmatic and hydrothermal processes. Three types of titanite are documented: magmatic, deuteric, and hydrothermal. The magmatic titanite (Ttn I) grains are euhedral wedge-shaped, while the deuteric type (Ttn II) occurs as coronas on magmatic ilmenite. The hydrothermal titanite (Ttn III) occurs as either bead-like clusters within the cleavage planes of chloritized biotite or as anhedral grains (lesser than 200 <i>μ</i>m in diameter) coexisting with hydrothermal actinolite, chlorite, fluorite, and/or REE-rich oxides. The magmatic titanite grains from the most primitive igneous rocks have U–Pb ages of 455 ± 25 Ma and are characterized by high levels of Nb<sub>2</sub>O<sub>5</sub> (up to 1.4 wt%) and other high field strength elements (HFSE, up to 1.3 wt% ZrO<sub>2</sub>), rare earth elements (REE), and V, and high mean crystallization temperatures (880 ± 40 °C), suggesting that they nucleated and crystallized in a high-<i>T</i> and Nb-rich alkaline magma during the Early Paleozoic. The gradual decrease in V, Sr, and Ba in Ttn I from mafic to intermediate dykes exemplifies the role of fractionation on magmatic enrichment of Nb (mean of 170 ppm and 7300 ppm for Ttn I in mafic and intermediate dykes, respectively) and other incompatible elements (e.g., Ta, Zr, Hf, Sn, Y, and REE) in the residual melt. The deuteric and hydrothermal types of titanites in each lithology have lower concentrations of HFSE (e.g., Nb mean of 140 ppm and 860 ppm for Ttn II in mafic and intermediate dykes, respectively), Sn, LREE, and Y but higher Al, F, V, Sr, and HREE contents than their magmatic counterpart. The deuteric and hydrothermal types of titanite have U–Pb ages of 420 ± 25 Ma and 232 ± 49 Ma, respectively, supporting two distinct hydrothermal events at Ziyang. The magmatic and deuteric types of titanite have similar ranges of εNd(t) values (+ 1.4 to + 3.5 and + 2 to + 4.2, respectively), indicative of a common source for these two generations. The hydrothermal titanite also has comparable εNd(t) values (+ 0.8 to + 2.7) to the magmatic and deuteric types, indicating a minimal external contribution to Nd (and by analogy Nb as well) from the late hydrothermal fluids. The deuteric and late hydrothermal F-rich fluids in Ziyang dyke swarms both remobilized the dispersed Nb in magmatic ilmenite, amphibole, and biotite to form secondary titanite (Ttn II, III), which is beneficial to the metallurgical extraction of this critical metal. Therefore, both magmatic fractional crystallization and hydrothermal remobilization contributed to Nb mineralization.</p></div>\",\"PeriodicalId\":526,\"journal\":{\"name\":\"Contributions to Mineralogy and Petrology\",\"volume\":\"179 5\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions to Mineralogy and Petrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00410-024-02120-5\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00410-024-02120-5","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Remobilization and enrichment of Nb during magmatic and hydrothermal processes: insights from titanite in Nb-rich dyke swarms of South Qinling, China
Giant Nb deposits hosted by alkaline igneous rocks worldwide are characterized by hydrothermal and/or metamorphic modifications after magmatic crystallization. However, the impact of secondary processes on Nb mineralization in alkaline igneous rocks remains controversial. In this study, U–Pb ages, elemental, and Nd isotope compositions of titanite from a series of Nb-rich dyke swarms in the Ziyang region of South Qinling (China) have been investigated to unveil Nb remobilization and enrichment histories during magmatic and hydrothermal processes. Three types of titanite are documented: magmatic, deuteric, and hydrothermal. The magmatic titanite (Ttn I) grains are euhedral wedge-shaped, while the deuteric type (Ttn II) occurs as coronas on magmatic ilmenite. The hydrothermal titanite (Ttn III) occurs as either bead-like clusters within the cleavage planes of chloritized biotite or as anhedral grains (lesser than 200 μm in diameter) coexisting with hydrothermal actinolite, chlorite, fluorite, and/or REE-rich oxides. The magmatic titanite grains from the most primitive igneous rocks have U–Pb ages of 455 ± 25 Ma and are characterized by high levels of Nb2O5 (up to 1.4 wt%) and other high field strength elements (HFSE, up to 1.3 wt% ZrO2), rare earth elements (REE), and V, and high mean crystallization temperatures (880 ± 40 °C), suggesting that they nucleated and crystallized in a high-T and Nb-rich alkaline magma during the Early Paleozoic. The gradual decrease in V, Sr, and Ba in Ttn I from mafic to intermediate dykes exemplifies the role of fractionation on magmatic enrichment of Nb (mean of 170 ppm and 7300 ppm for Ttn I in mafic and intermediate dykes, respectively) and other incompatible elements (e.g., Ta, Zr, Hf, Sn, Y, and REE) in the residual melt. The deuteric and hydrothermal types of titanites in each lithology have lower concentrations of HFSE (e.g., Nb mean of 140 ppm and 860 ppm for Ttn II in mafic and intermediate dykes, respectively), Sn, LREE, and Y but higher Al, F, V, Sr, and HREE contents than their magmatic counterpart. The deuteric and hydrothermal types of titanite have U–Pb ages of 420 ± 25 Ma and 232 ± 49 Ma, respectively, supporting two distinct hydrothermal events at Ziyang. The magmatic and deuteric types of titanite have similar ranges of εNd(t) values (+ 1.4 to + 3.5 and + 2 to + 4.2, respectively), indicative of a common source for these two generations. The hydrothermal titanite also has comparable εNd(t) values (+ 0.8 to + 2.7) to the magmatic and deuteric types, indicating a minimal external contribution to Nd (and by analogy Nb as well) from the late hydrothermal fluids. The deuteric and late hydrothermal F-rich fluids in Ziyang dyke swarms both remobilized the dispersed Nb in magmatic ilmenite, amphibole, and biotite to form secondary titanite (Ttn II, III), which is beneficial to the metallurgical extraction of this critical metal. Therefore, both magmatic fractional crystallization and hydrothermal remobilization contributed to Nb mineralization.
期刊介绍:
Contributions to Mineralogy and Petrology is an international journal that accepts high quality research papers in the fields of igneous and metamorphic petrology, geochemistry and mineralogy.
Topics of interest include: major element, trace element and isotope geochemistry, geochronology, experimental petrology, igneous and metamorphic petrology, mineralogy, major and trace element mineral chemistry and thermodynamic modeling of petrologic and geochemical processes.