用于处理非正规住区污染径流的地下流动石生物滤池的水力特性

Water Supply Pub Date : 2024-04-15 DOI:10.2166/ws.2024.080
Kalpana Maraj, Kevin Winter, Susan T. L. Harrison
{"title":"用于处理非正规住区污染径流的地下流动石生物滤池的水力特性","authors":"Kalpana Maraj, Kevin Winter, Susan T. L. Harrison","doi":"10.2166/ws.2024.080","DOIUrl":null,"url":null,"abstract":"\n Polluted runoff from informal settlements in developing countries poses a growing challenge due to the elevated and variable nature of contaminants, particularly nutrients and pathogens, introduced to the environment. Cost-effective and scalable treatment systems with the ability to reduce nutrient and other pollutant concentrations in contaminated runoff are desirable. Biofilters are passive water treatment systems that have the potential to achieve this. The Franschhoek Water Hub, a research site for nature-based solutions, features six large biofiltration cells designed to remediate runoff from an informal settlement. Due to their large size, understanding hydraulic behaviour and validating the design proves challenging. To address this, a scaled-down version of the Water Hub's biofilters was constructed to inform design criteria for purpose-built filters. The pilot-scale subsurface flow biofilter, filled with 8–11 mm aggregate stone, had an available volume of 225 L. Pulse tracer studies conducted at various flow rates demonstrated that the system approximated plug flow behaviour. Lower flow rates resulted in deeper tracer infiltration, which is crucial for maximising the distribution of nutrients within the filter bed. This research contributes to the effective design and operation of biofiltration systems, which hold promise for addressing surface water contamination issues in resource-constrained regions.","PeriodicalId":509977,"journal":{"name":"Water Supply","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The hydraulic characteristics of a subsurface flow stone biofilter for treating polluted runoff from an informal settlement\",\"authors\":\"Kalpana Maraj, Kevin Winter, Susan T. L. Harrison\",\"doi\":\"10.2166/ws.2024.080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Polluted runoff from informal settlements in developing countries poses a growing challenge due to the elevated and variable nature of contaminants, particularly nutrients and pathogens, introduced to the environment. Cost-effective and scalable treatment systems with the ability to reduce nutrient and other pollutant concentrations in contaminated runoff are desirable. Biofilters are passive water treatment systems that have the potential to achieve this. The Franschhoek Water Hub, a research site for nature-based solutions, features six large biofiltration cells designed to remediate runoff from an informal settlement. Due to their large size, understanding hydraulic behaviour and validating the design proves challenging. To address this, a scaled-down version of the Water Hub's biofilters was constructed to inform design criteria for purpose-built filters. The pilot-scale subsurface flow biofilter, filled with 8–11 mm aggregate stone, had an available volume of 225 L. Pulse tracer studies conducted at various flow rates demonstrated that the system approximated plug flow behaviour. Lower flow rates resulted in deeper tracer infiltration, which is crucial for maximising the distribution of nutrients within the filter bed. This research contributes to the effective design and operation of biofiltration systems, which hold promise for addressing surface water contamination issues in resource-constrained regions.\",\"PeriodicalId\":509977,\"journal\":{\"name\":\"Water Supply\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Supply\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/ws.2024.080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Supply","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/ws.2024.080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于污染物,特别是营养物质和病原体进入环境后会升高且性质多变,发展中国家非正规住区的污染径流构成了日益严峻的挑战。我们需要具有成本效益和可扩展的处理系统,能够降低受污染径流中的营养物质和其他污染物的浓度。生物滤池是一种被动式水处理系统,有可能实现这一目标。Franschhoek Water Hub 是一个以自然为基础的解决方案研究基地,设有六个大型生物滤池,用于处理一个非正式定居点的径流。由于它们体积庞大,了解水力行为和验证设计具有挑战性。为了解决这个问题,我们建造了一个缩小版的水枢纽生物滤池,为专用滤池的设计标准提供参考。在不同流速下进行的脉冲示踪研究表明,该系统接近于塞流行为。流速越低,示踪剂渗透越深,这对于最大限度地分配滤床内的养分至关重要。这项研究有助于生物过滤系统的有效设计和运行,为解决资源有限地区的地表水污染问题带来了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The hydraulic characteristics of a subsurface flow stone biofilter for treating polluted runoff from an informal settlement
Polluted runoff from informal settlements in developing countries poses a growing challenge due to the elevated and variable nature of contaminants, particularly nutrients and pathogens, introduced to the environment. Cost-effective and scalable treatment systems with the ability to reduce nutrient and other pollutant concentrations in contaminated runoff are desirable. Biofilters are passive water treatment systems that have the potential to achieve this. The Franschhoek Water Hub, a research site for nature-based solutions, features six large biofiltration cells designed to remediate runoff from an informal settlement. Due to their large size, understanding hydraulic behaviour and validating the design proves challenging. To address this, a scaled-down version of the Water Hub's biofilters was constructed to inform design criteria for purpose-built filters. The pilot-scale subsurface flow biofilter, filled with 8–11 mm aggregate stone, had an available volume of 225 L. Pulse tracer studies conducted at various flow rates demonstrated that the system approximated plug flow behaviour. Lower flow rates resulted in deeper tracer infiltration, which is crucial for maximising the distribution of nutrients within the filter bed. This research contributes to the effective design and operation of biofiltration systems, which hold promise for addressing surface water contamination issues in resource-constrained regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The performance of encoder–decoder neural networks for leak detection in water distribution networks Impact of flexible vegetation on hydraulic characteristics in compound channels with converging floodplains Climatic teleconnection of the future trend of meteorological, GRACE-DSI, and vegetation-conditioned-based drought analysis in the Ganga Basin Does water rights trading promote the efficiency of water use? Empirical evidence from pilot water rights trading in China Water quality analysis, treatment, and economic feasibility of water services of the Neora River in the fringe area of Neora-Valley National Park, India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1