{"title":"从复杂光谱分析看强相干场驱动的分子超快共振光子发射","authors":"Maito Katayama, Satoshi Tanaka, K. Kanki","doi":"10.3390/physics6020038","DOIUrl":null,"url":null,"abstract":"In this study, we investigate the time–frequency-resolved resonant photon emission from a molecular vibrational oscillator driven by a monochromatic coherent external field. Using the complex spectral analysis of the Liouvillian, which integrates irreversible dissipative phenomena into quantum theory, we elucidate the fundamental processes of photon emission. Indeed, our analytical approach successfully decomposes the emission spectrum into two intrinsic contributions: one from a resonance eigenmode and another from continuous eigenmodes. These components are responsible for incoherent luminescence and coherent scattering photon emission processes, respectively. Our results show that while spontaneous emission dominates in the early stages of the emission process, coherent scattering gradually becomes more pronounced with time. Furthermore, destructive quantum interference between the two components plays a key role in determining the overall shape of the emission spectrum.","PeriodicalId":509432,"journal":{"name":"Physics","volume":"19 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrafast Resonant Photon Emission from a Molecule Driven by a Strong Coherent Field in Terms of Complex Spectral Analysis\",\"authors\":\"Maito Katayama, Satoshi Tanaka, K. Kanki\",\"doi\":\"10.3390/physics6020038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we investigate the time–frequency-resolved resonant photon emission from a molecular vibrational oscillator driven by a monochromatic coherent external field. Using the complex spectral analysis of the Liouvillian, which integrates irreversible dissipative phenomena into quantum theory, we elucidate the fundamental processes of photon emission. Indeed, our analytical approach successfully decomposes the emission spectrum into two intrinsic contributions: one from a resonance eigenmode and another from continuous eigenmodes. These components are responsible for incoherent luminescence and coherent scattering photon emission processes, respectively. Our results show that while spontaneous emission dominates in the early stages of the emission process, coherent scattering gradually becomes more pronounced with time. Furthermore, destructive quantum interference between the two components plays a key role in determining the overall shape of the emission spectrum.\",\"PeriodicalId\":509432,\"journal\":{\"name\":\"Physics\",\"volume\":\"19 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/physics6020038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/physics6020038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultrafast Resonant Photon Emission from a Molecule Driven by a Strong Coherent Field in Terms of Complex Spectral Analysis
In this study, we investigate the time–frequency-resolved resonant photon emission from a molecular vibrational oscillator driven by a monochromatic coherent external field. Using the complex spectral analysis of the Liouvillian, which integrates irreversible dissipative phenomena into quantum theory, we elucidate the fundamental processes of photon emission. Indeed, our analytical approach successfully decomposes the emission spectrum into two intrinsic contributions: one from a resonance eigenmode and another from continuous eigenmodes. These components are responsible for incoherent luminescence and coherent scattering photon emission processes, respectively. Our results show that while spontaneous emission dominates in the early stages of the emission process, coherent scattering gradually becomes more pronounced with time. Furthermore, destructive quantum interference between the two components plays a key role in determining the overall shape of the emission spectrum.