Based on the position and momentum of noncommutative relations with a noncanonical map, we study the Dirac equation and analyze its parity and time reversal symmetries in a noncommutative phase space. Noncommutative parameters can be endowed with the Planck length and cosmological constant such that the noncommutative effect can be interpreted as an effective gauge potential or a (0,2)-type curvature associated with the Plank constant and cosmological constant. This provides a natural coupling between dynamics and spacetime geometry. We find that a free Dirac particle carries an intrinsic velocity and force induced by the noncommutative algebra. These properties provide a novel insight into the Zitterbewegung oscillation and the physical scenario of dark energy. Using perturbation theory, we derive the perturbed and nonrelativistic solutions of the Dirac equation. The asymmetric vacuum gaps of particles and antiparticles reveal the particle–antiparticle symmetry breaking in the noncommutative phase space, which provides a clue to understanding the physical mechanisms of particle–antiparticle asymmetry and quantum decoherence through quantum spacetime fluctuation.
{"title":"Dirac Theory in Noncommutative Phase Spaces","authors":"Shi‐Dong Liang","doi":"10.3390/physics6030058","DOIUrl":"https://doi.org/10.3390/physics6030058","url":null,"abstract":"Based on the position and momentum of noncommutative relations with a noncanonical map, we study the Dirac equation and analyze its parity and time reversal symmetries in a noncommutative phase space. Noncommutative parameters can be endowed with the Planck length and cosmological constant such that the noncommutative effect can be interpreted as an effective gauge potential or a (0,2)-type curvature associated with the Plank constant and cosmological constant. This provides a natural coupling between dynamics and spacetime geometry. We find that a free Dirac particle carries an intrinsic velocity and force induced by the noncommutative algebra. These properties provide a novel insight into the Zitterbewegung oscillation and the physical scenario of dark energy. Using perturbation theory, we derive the perturbed and nonrelativistic solutions of the Dirac equation. The asymmetric vacuum gaps of particles and antiparticles reveal the particle–antiparticle symmetry breaking in the noncommutative phase space, which provides a clue to understanding the physical mechanisms of particle–antiparticle asymmetry and quantum decoherence through quantum spacetime fluctuation.","PeriodicalId":509432,"journal":{"name":"Physics","volume":" 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141668693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The International System of Units (SI), the current form of the metric system and the world’s most used system of units, has been continuously updated and refined since the Metre Convention of 1875 to ensure that it remains up to date with the latest scientific and technological advances. The General Conference on Weights and Measures, at its 26th meeting in 2018, decided to adopt stipulated values of seven physical constants linked to seven measurement units (the second, meter, kilogram, ampere, kelvin, mole, and candela). This paper reviews the technologies developed, in intense and long-standing work, to determine the Avogadro and Planck constants, which are now integral to realising the kilogram.
{"title":"Avogadro and Planck Constants, Two Pillars of the International System of Units","authors":"Enrico Massa","doi":"10.3390/physics6020052","DOIUrl":"https://doi.org/10.3390/physics6020052","url":null,"abstract":"The International System of Units (SI), the current form of the metric system and the world’s most used system of units, has been continuously updated and refined since the Metre Convention of 1875 to ensure that it remains up to date with the latest scientific and technological advances. The General Conference on Weights and Measures, at its 26th meeting in 2018, decided to adopt stipulated values of seven physical constants linked to seven measurement units (the second, meter, kilogram, ampere, kelvin, mole, and candela). This paper reviews the technologies developed, in intense and long-standing work, to determine the Avogadro and Planck constants, which are now integral to realising the kilogram.","PeriodicalId":509432,"journal":{"name":"Physics","volume":"40 13","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141268679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dhananjay Yadav, M. K. Awasthi, Ashwani Kumar, N. Dutt
The mutual influences of the electric field, rotation, and heat transmission find applications in controlled drug delivery systems, precise microfluidic manipulation, and advanced materials’ processing techniques due to their ability to tailor fluid behavior and surface morphology with enhanced precision and efficiency. Capillary instability has widespread relevance in various natural and industrial processes, ranging from the breakup of liquid jets and the formation of droplets in inkjet printing to the dynamics of thin liquid films and the behavior of liquid bridges in microgravity environments. This study examines the swirling impact on the instability arising from the capillary effects at the boundary of Rivlin–Ericksen and viscous liquids, influenced by an axial electric field, heat, and mass transmission. Capillary instability arises when the cohesive forces at the interface between two fluids are disrupted by perturbations, leading to the formation of characteristic patterns such as waves or droplets. The influence of gravity and fluid flow velocity is disregarded in the context of capillary instability analyses. The annular region is formed by two cylinders: one containing a viscous fluid and the other a Rivlin–Ericksen viscoelastic fluid. The Rivlin–Ericksen model is pivotal for comprehending the characteristics of viscoelastic fluids, widely utilized in industrial and biological contexts. It precisely characterizes their rheological complexities, encompassing elasticity and viscosity, critical for forecasting flow dynamics in polymer processing, food production, and drug delivery. Moreover, its applications extend to biomedical engineering, offering insights crucial for medical device design and understanding biological phenomena like blood flow. The inside cylinder remains stationary, and the outside cylinder rotates at a steady pace. A numerically analyzed quadratic growth rate is obtained from perturbed equations using potential flow theory and the Rivlin–Ericksen fluid model. The findings demonstrate enhanced stability due to the heat and mass transfer and increased stability from swirling. Notably, the heat transfer stabilizes the interface, while the density ratio and centrifuge number also impact stability. An axial electric field exhibits a dual effect, with certain permittivity and conductivity ratios causing perturbation growth decay or expansion.
{"title":"Swirling Capillary Instability of Rivlin–Ericksen Liquid with Heat Transfer and Axial Electric Field","authors":"Dhananjay Yadav, M. K. Awasthi, Ashwani Kumar, N. Dutt","doi":"10.3390/physics6020051","DOIUrl":"https://doi.org/10.3390/physics6020051","url":null,"abstract":"The mutual influences of the electric field, rotation, and heat transmission find applications in controlled drug delivery systems, precise microfluidic manipulation, and advanced materials’ processing techniques due to their ability to tailor fluid behavior and surface morphology with enhanced precision and efficiency. Capillary instability has widespread relevance in various natural and industrial processes, ranging from the breakup of liquid jets and the formation of droplets in inkjet printing to the dynamics of thin liquid films and the behavior of liquid bridges in microgravity environments. This study examines the swirling impact on the instability arising from the capillary effects at the boundary of Rivlin–Ericksen and viscous liquids, influenced by an axial electric field, heat, and mass transmission. Capillary instability arises when the cohesive forces at the interface between two fluids are disrupted by perturbations, leading to the formation of characteristic patterns such as waves or droplets. The influence of gravity and fluid flow velocity is disregarded in the context of capillary instability analyses. The annular region is formed by two cylinders: one containing a viscous fluid and the other a Rivlin–Ericksen viscoelastic fluid. The Rivlin–Ericksen model is pivotal for comprehending the characteristics of viscoelastic fluids, widely utilized in industrial and biological contexts. It precisely characterizes their rheological complexities, encompassing elasticity and viscosity, critical for forecasting flow dynamics in polymer processing, food production, and drug delivery. Moreover, its applications extend to biomedical engineering, offering insights crucial for medical device design and understanding biological phenomena like blood flow. The inside cylinder remains stationary, and the outside cylinder rotates at a steady pace. A numerically analyzed quadratic growth rate is obtained from perturbed equations using potential flow theory and the Rivlin–Ericksen fluid model. The findings demonstrate enhanced stability due to the heat and mass transfer and increased stability from swirling. Notably, the heat transfer stabilizes the interface, while the density ratio and centrifuge number also impact stability. An axial electric field exhibits a dual effect, with certain permittivity and conductivity ratios causing perturbation growth decay or expansion.","PeriodicalId":509432,"journal":{"name":"Physics","volume":"6 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141271059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Social structure may have changed from hierarchical to egalitarian and back along the evolutionary line of humans. Within the tradition of sociophysics, we construct a mathematical model of a society of agents subject to competing cognitive and social navigation constraints and predict, using statistical mechanics methods, that its degree of hierarchy decreases with encephalization and increases with group size, hence suggesting human societies were driven from hierarchical to egalitarian structures by the encephalization during the last few million years and back to hierarchical due to fast demographic changes during the Neolithic. In addition, applied to a different problem, the theory leads to the following predictions for modern pre-literary humans: (i) an intermediate hierarchy degree in mild climates. In harsher climates, societies will be (ii) more egalitarian if organized in small groups (of less than 100 persons) but (iii) more hierarchical if in larger (of more than 1000 persons) groups. The predicted bifurcation, characteristic of a phase transition, is also seen in the empirical cross-cultural record (248 cultures in the Ethnographic Atlas).
{"title":"Statistical Mechanics of Social Hierarchies: A Mathematical Model for the Evolution of Human Societal Structures","authors":"Nestor Caticha, Rafael S. Calsaverini, R. Vicente","doi":"10.3390/physics6020041","DOIUrl":"https://doi.org/10.3390/physics6020041","url":null,"abstract":"Social structure may have changed from hierarchical to egalitarian and back along the evolutionary line of humans. Within the tradition of sociophysics, we construct a mathematical model of a society of agents subject to competing cognitive and social navigation constraints and predict, using statistical mechanics methods, that its degree of hierarchy decreases with encephalization and increases with group size, hence suggesting human societies were driven from hierarchical to egalitarian structures by the encephalization during the last few million years and back to hierarchical due to fast demographic changes during the Neolithic. In addition, applied to a different problem, the theory leads to the following predictions for modern pre-literary humans: (i) an intermediate hierarchy degree in mild climates. In harsher climates, societies will be (ii) more egalitarian if organized in small groups (of less than 100 persons) but (iii) more hierarchical if in larger (of more than 1000 persons) groups. The predicted bifurcation, characteristic of a phase transition, is also seen in the empirical cross-cultural record (248 cultures in the Ethnographic Atlas).","PeriodicalId":509432,"journal":{"name":"Physics","volume":" December","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140682394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We explore the dependence of vacuum energy on the boundary conditions for massive scalar fields in (2 + 1)-dimensional spacetimes. We consider the simplest geometrical setup given by a two-dimensional space bounded by two homogeneous parallel wires in order to compare it with the non-perturbative behaviour of the Casimir energy for non-Abelian gauge theories in (2 + 1) dimensions. Our results show the existence of two types of boundary conditions which give rise to two different asymptotic exponential decay regimes of the Casimir energy at large distances. The two families are distinguished by the feature that the boundary conditions involve or not interrelations between the behaviour of the fields at the two boundaries. Non-perturbative numerical simulations and analytical arguments show such an exponential decay for Dirichlet boundary conditions of SU(2) gauge theories. The verification that this behaviour is modified for other types of boundary conditions requires further numerical work. Subdominant corrections in the low-temperature regime are very relevant for numerical simulations, and they are also analysed in this paper.
{"title":"Casimir Energy in (2 + 1)-Dimensional Field Theories","authors":"M. Asorey, Claudio Iuliano, Fernando Ezquerro","doi":"10.3390/physics6020040","DOIUrl":"https://doi.org/10.3390/physics6020040","url":null,"abstract":"We explore the dependence of vacuum energy on the boundary conditions for massive scalar fields in (2 + 1)-dimensional spacetimes. We consider the simplest geometrical setup given by a two-dimensional space bounded by two homogeneous parallel wires in order to compare it with the non-perturbative behaviour of the Casimir energy for non-Abelian gauge theories in (2 + 1) dimensions. Our results show the existence of two types of boundary conditions which give rise to two different asymptotic exponential decay regimes of the Casimir energy at large distances. The two families are distinguished by the feature that the boundary conditions involve or not interrelations between the behaviour of the fields at the two boundaries. Non-perturbative numerical simulations and analytical arguments show such an exponential decay for Dirichlet boundary conditions of SU(2) gauge theories. The verification that this behaviour is modified for other types of boundary conditions requires further numerical work. Subdominant corrections in the low-temperature regime are very relevant for numerical simulations, and they are also analysed in this paper.","PeriodicalId":509432,"journal":{"name":"Physics","volume":"213 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140693054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elena Tomei, Riccardo Bizzi, Vittorio Merlo, F. Romeo, Gaetano Salina, Matteo Cirillo
The present investigation explores the spatial distribution of Cooper pair density in graph-shaped arrays of Josephson junctions using a Ginzburg–Landau approach. We specifically investigate double-comb structures and compare their properties with linear arrays as reference systems. Our findings reveal that the peculiar connectivity of the double-comb structure leads to spatial gradients in the order parameter, which can be readily detected through measurements of Josephson critical currents. We present experimental results which indicate the specific dependence of the order parameter on the branches of the graphs and are evidence of the theoretical predictions.
{"title":"Critical Temperature and Critical Current Enhancement in Arrays of Josephson Junctions: A Ginzburg–Landau Perspective","authors":"Elena Tomei, Riccardo Bizzi, Vittorio Merlo, F. Romeo, Gaetano Salina, Matteo Cirillo","doi":"10.3390/physics6020039","DOIUrl":"https://doi.org/10.3390/physics6020039","url":null,"abstract":"The present investigation explores the spatial distribution of Cooper pair density in graph-shaped arrays of Josephson junctions using a Ginzburg–Landau approach. We specifically investigate double-comb structures and compare their properties with linear arrays as reference systems. Our findings reveal that the peculiar connectivity of the double-comb structure leads to spatial gradients in the order parameter, which can be readily detected through measurements of Josephson critical currents. We present experimental results which indicate the specific dependence of the order parameter on the branches of the graphs and are evidence of the theoretical predictions.","PeriodicalId":509432,"journal":{"name":"Physics","volume":"314 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140703608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, we investigate the time–frequency-resolved resonant photon emission from a molecular vibrational oscillator driven by a monochromatic coherent external field. Using the complex spectral analysis of the Liouvillian, which integrates irreversible dissipative phenomena into quantum theory, we elucidate the fundamental processes of photon emission. Indeed, our analytical approach successfully decomposes the emission spectrum into two intrinsic contributions: one from a resonance eigenmode and another from continuous eigenmodes. These components are responsible for incoherent luminescence and coherent scattering photon emission processes, respectively. Our results show that while spontaneous emission dominates in the early stages of the emission process, coherent scattering gradually becomes more pronounced with time. Furthermore, destructive quantum interference between the two components plays a key role in determining the overall shape of the emission spectrum.
{"title":"Ultrafast Resonant Photon Emission from a Molecule Driven by a Strong Coherent Field in Terms of Complex Spectral Analysis","authors":"Maito Katayama, Satoshi Tanaka, K. Kanki","doi":"10.3390/physics6020038","DOIUrl":"https://doi.org/10.3390/physics6020038","url":null,"abstract":"In this study, we investigate the time–frequency-resolved resonant photon emission from a molecular vibrational oscillator driven by a monochromatic coherent external field. Using the complex spectral analysis of the Liouvillian, which integrates irreversible dissipative phenomena into quantum theory, we elucidate the fundamental processes of photon emission. Indeed, our analytical approach successfully decomposes the emission spectrum into two intrinsic contributions: one from a resonance eigenmode and another from continuous eigenmodes. These components are responsible for incoherent luminescence and coherent scattering photon emission processes, respectively. Our results show that while spontaneous emission dominates in the early stages of the emission process, coherent scattering gradually becomes more pronounced with time. Furthermore, destructive quantum interference between the two components plays a key role in determining the overall shape of the emission spectrum.","PeriodicalId":509432,"journal":{"name":"Physics","volume":"19 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140715844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. V. Baimler, Alexey S. Baryshev, Anastasiya O. Dikovskaya, V. K. Chevokin, O. V. Uvarov, M. Astashev, S. Gudkov, A. V. Simakin
This paper studies the dynamics of the development of laser breakdown plasma in aqueous colloids of dysprosium nanoparticles by analyzing the time patterns of plasma images obtained using a high-speed streak camera. In addition, the distribution of plasma flashes in space and their luminosity were studied, and the amplitude of acoustic signals and the rate of generation of new chemical products were studied depending on the concentration of dysprosium nanoparticles in the colloid. Laser breakdown was initiated by pulsed radiation from a nanosecond Nd:YAG laser. It is shown that the size of the plasma flash, the speed of motion of the plasma–liquid interface, and the lifetime of the plasma flash decrease with an increasing concentration of nanoparticles in the colloid. In this case, the time delay between the beginning of the laser pulse and the moment the plasma flash reaches its maximum intensity increases with increasing concentrations of nanoparticles. Varying the laser fluence in the range from 67 J/cm2 to 134 J/cm2 does not lead to noticeable changes in these parameters, due to the transition of the breakdown plasma to the critical regime. For dysprosium nanoparticles during laser breakdown of colloids, a decrease in the yield of hydrogen peroxide and an increase in the rate of formation of hydroxyl radicals per water molecule, characteristic of nanoparticles of rare earth metals, are observed, which may be due to the participation of nanoparticles and hydrogen peroxide in reactions similar to the Fenton and Haber–Weiss reactions.
{"title":"Nanosecond-Laser-Induced Breakdown of Aqueous Colloidal Solutions of Dysprosium Nanoparticles: The Influence of Nanoparticle Concentration on the Breakdown Plasma and the Intensity of Physical and Chemical Processes","authors":"I. V. Baimler, Alexey S. Baryshev, Anastasiya O. Dikovskaya, V. K. Chevokin, O. V. Uvarov, M. Astashev, S. Gudkov, A. V. Simakin","doi":"10.3390/physics6020035","DOIUrl":"https://doi.org/10.3390/physics6020035","url":null,"abstract":"This paper studies the dynamics of the development of laser breakdown plasma in aqueous colloids of dysprosium nanoparticles by analyzing the time patterns of plasma images obtained using a high-speed streak camera. In addition, the distribution of plasma flashes in space and their luminosity were studied, and the amplitude of acoustic signals and the rate of generation of new chemical products were studied depending on the concentration of dysprosium nanoparticles in the colloid. Laser breakdown was initiated by pulsed radiation from a nanosecond Nd:YAG laser. It is shown that the size of the plasma flash, the speed of motion of the plasma–liquid interface, and the lifetime of the plasma flash decrease with an increasing concentration of nanoparticles in the colloid. In this case, the time delay between the beginning of the laser pulse and the moment the plasma flash reaches its maximum intensity increases with increasing concentrations of nanoparticles. Varying the laser fluence in the range from 67 J/cm2 to 134 J/cm2 does not lead to noticeable changes in these parameters, due to the transition of the breakdown plasma to the critical regime. For dysprosium nanoparticles during laser breakdown of colloids, a decrease in the yield of hydrogen peroxide and an increase in the rate of formation of hydroxyl radicals per water molecule, characteristic of nanoparticles of rare earth metals, are observed, which may be due to the participation of nanoparticles and hydrogen peroxide in reactions similar to the Fenton and Haber–Weiss reactions.","PeriodicalId":509432,"journal":{"name":"Physics","volume":"60 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140724818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We develop a Green’s functions scattering method for systems with Chern–Simons plane boundary layers on dielectric half-spaces. The Casimir pressure is derived by evaluation of the stress tensor in a vacuum slit between two half-spaces. The sign of the Casimir pressure on a Chern–Simons plane layer separated by a vacuum slit from the Chern–Simons layer at the boundary of a dielectric half-space is analyzed for intrinsic Si and SiO2 glass substrates.
我们针对介电半空间上的切尔-西蒙平面边界层系统开发了一种格林函数散射方法。卡西米尔压力是通过评估两个半空间之间真空狭缝中的应力张量得出的。针对本征 Si 和 SiO2 玻璃衬底,分析了被真空缝隙与介电半空间边界上的 Chern-Simons 层隔开的 Chern-Simons 平面层上的卡西米尔压力的符号。
{"title":"Casimir Interaction of Chern–Simons Layers on Substrates via Vacuum Stress Tensor","authors":"V. Marachevsky, A. Sidelnikov","doi":"10.3390/physics6020033","DOIUrl":"https://doi.org/10.3390/physics6020033","url":null,"abstract":"We develop a Green’s functions scattering method for systems with Chern–Simons plane boundary layers on dielectric half-spaces. The Casimir pressure is derived by evaluation of the stress tensor in a vacuum slit between two half-spaces. The sign of the Casimir pressure on a Chern–Simons plane layer separated by a vacuum slit from the Chern–Simons layer at the boundary of a dielectric half-space is analyzed for intrinsic Si and SiO2 glass substrates.","PeriodicalId":509432,"journal":{"name":"Physics","volume":"169 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140751618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, we propose how to use objective arguments grounded in statistical mechanics concepts in order to obtain a single number, obtained after aggregation, which would allow for the ranking of “agents”, “opinions”, etc., all defined in a very broad sense. We aim toward any process which should a priori demand or lead to some consensus in order to attain the presumably best choice among many possibilities. In order to specify the framework, we discuss previous attempts, recalling trivial means of scores—weighted or not—Condorcet paradox, TOPSIS (Technique for Order Preference by Similarity to Ideal Solution), etc. We demonstrate, through geometrical arguments on a toy example and with four criteria, that the pre-selected order of criteria in previous attempts makes a difference in the final result. However, it might be unjustified. Thus, we base our “best choice theory” on the linear response theory in statistical physics: we indicate that one should be calculating correlations functions between all possible choice evaluations, thereby avoiding an arbitrarily ordered set of criteria. We justify the point through an example with six possible criteria. Applications in many fields are suggested. Furthermore, two toy models, serving as practical examples and illustrative arguments are discussed.
{"title":"A Theory of Best Choice Selection through Objective Arguments Grounded in Linear Response Theory Concepts","authors":"Marcel Ausloos, Giulia Rotundo, Roy Cerqueti","doi":"10.3390/physics6020031","DOIUrl":"https://doi.org/10.3390/physics6020031","url":null,"abstract":"In this study, we propose how to use objective arguments grounded in statistical mechanics concepts in order to obtain a single number, obtained after aggregation, which would allow for the ranking of “agents”, “opinions”, etc., all defined in a very broad sense. We aim toward any process which should a priori demand or lead to some consensus in order to attain the presumably best choice among many possibilities. In order to specify the framework, we discuss previous attempts, recalling trivial means of scores—weighted or not—Condorcet paradox, TOPSIS (Technique for Order Preference by Similarity to Ideal Solution), etc. We demonstrate, through geometrical arguments on a toy example and with four criteria, that the pre-selected order of criteria in previous attempts makes a difference in the final result. However, it might be unjustified. Thus, we base our “best choice theory” on the linear response theory in statistical physics: we indicate that one should be calculating correlations functions between all possible choice evaluations, thereby avoiding an arbitrarily ordered set of criteria. We justify the point through an example with six possible criteria. Applications in many fields are suggested. Furthermore, two toy models, serving as practical examples and illustrative arguments are discussed.","PeriodicalId":509432,"journal":{"name":"Physics","volume":"36 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140373989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}