{"title":"聚磷酸铵和植酸钡协同改性聚氨酯泡沫的阻燃性能和热稳定性研究","authors":"Gaojie Ding, Simiao Sun, Shou Ding, Xu Zhang, Hua Xie","doi":"10.1515/ipp-2023-4454","DOIUrl":null,"url":null,"abstract":"\n Barium phytate (Pa–Ba) was prepared by phytic acid and barium carbonate, and then the flame-retardant modified polyurethane foam (PUF) was synergized with Pa–Ba and ammonium polyphosphate (APP). The flame retardant properties and thermal stability of the modified PUFs were investigated by thermogravimetric analysis, cone calorimetry (CONE) and smoke density (Ds). The results showed the modified PUF with the addition of 5 % Pa–Ba and 10 % APP (PUF-A10-PB5) had the highest integral programmed decomposition temperature and the activation energy, indicating that its thermal stability was better compared with other samples. In addition, PUF-A10-PB5 had the lowest total heat release under different radiation intensities, and it had the smallest Ds and the highest light transmittance under the flame and flameless condition. The current results indicated that PUF-A10-PB5 had better flame-retardant properties and thermal stability, which can provide a useful reference for future experimental studies on the flame retardant properties of phytate-modified PUF.","PeriodicalId":14410,"journal":{"name":"International Polymer Processing","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on flame retardant properties and thermal stability of synergistically modified polyurethane foam with ammonium polyphosphate and barium phytate\",\"authors\":\"Gaojie Ding, Simiao Sun, Shou Ding, Xu Zhang, Hua Xie\",\"doi\":\"10.1515/ipp-2023-4454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Barium phytate (Pa–Ba) was prepared by phytic acid and barium carbonate, and then the flame-retardant modified polyurethane foam (PUF) was synergized with Pa–Ba and ammonium polyphosphate (APP). The flame retardant properties and thermal stability of the modified PUFs were investigated by thermogravimetric analysis, cone calorimetry (CONE) and smoke density (Ds). The results showed the modified PUF with the addition of 5 % Pa–Ba and 10 % APP (PUF-A10-PB5) had the highest integral programmed decomposition temperature and the activation energy, indicating that its thermal stability was better compared with other samples. In addition, PUF-A10-PB5 had the lowest total heat release under different radiation intensities, and it had the smallest Ds and the highest light transmittance under the flame and flameless condition. The current results indicated that PUF-A10-PB5 had better flame-retardant properties and thermal stability, which can provide a useful reference for future experimental studies on the flame retardant properties of phytate-modified PUF.\",\"PeriodicalId\":14410,\"journal\":{\"name\":\"International Polymer Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Polymer Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ipp-2023-4454\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Polymer Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ipp-2023-4454","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Study on flame retardant properties and thermal stability of synergistically modified polyurethane foam with ammonium polyphosphate and barium phytate
Barium phytate (Pa–Ba) was prepared by phytic acid and barium carbonate, and then the flame-retardant modified polyurethane foam (PUF) was synergized with Pa–Ba and ammonium polyphosphate (APP). The flame retardant properties and thermal stability of the modified PUFs were investigated by thermogravimetric analysis, cone calorimetry (CONE) and smoke density (Ds). The results showed the modified PUF with the addition of 5 % Pa–Ba and 10 % APP (PUF-A10-PB5) had the highest integral programmed decomposition temperature and the activation energy, indicating that its thermal stability was better compared with other samples. In addition, PUF-A10-PB5 had the lowest total heat release under different radiation intensities, and it had the smallest Ds and the highest light transmittance under the flame and flameless condition. The current results indicated that PUF-A10-PB5 had better flame-retardant properties and thermal stability, which can provide a useful reference for future experimental studies on the flame retardant properties of phytate-modified PUF.
期刊介绍:
International Polymer Processing offers original research contributions, invited review papers and recent technological developments in processing thermoplastics, thermosets, elastomers and fibers as well as polymer reaction engineering. For more than 25 years International Polymer Processing, the journal of the Polymer Processing Society, provides strictly peer-reviewed, high-quality articles and rapid communications from the leading experts around the world.