Syed Konain Abbas, Muhammad Usman Ghani Khan, Jia Zhu, Raheem Sarwar, Naif R. Aljohani, Ibrahim A. Hameed, Muhammad Umair Hassan
{"title":"使用更快 R-CNN 的基于视觉的智能交通灯管理系统","authors":"Syed Konain Abbas, Muhammad Usman Ghani Khan, Jia Zhu, Raheem Sarwar, Naif R. Aljohani, Ibrahim A. Hameed, Muhammad Umair Hassan","doi":"10.1049/cit2.12309","DOIUrl":null,"url":null,"abstract":"<p>Transportation systems primarily depend on vehicular flow on roads. Developed countries have shifted towards automated signal control, which manages and updates signal synchronisation automatically. In contrast, traffic in underdeveloped countries is mainly governed by manual traffic light systems. These existing manual systems lead to numerous issues, wasting substantial resources such as time, energy, and fuel, as they cannot make real-time decisions. In this work, we propose an algorithm to determine traffic signal durations based on real-time vehicle density, obtained from live closed circuit television camera feeds adjacent to traffic signals. The algorithm automates the traffic light system, making decisions based on vehicle density and employing Faster R-CNN for vehicle detection. Additionally, we have created a local dataset from live streams of Punjab Safe City cameras in collaboration with the local police authority. The proposed algorithm achieves a class accuracy of 96.6% and a vehicle detection accuracy of 95.7%. Across both day and night modes, our proposed method maintains an average precision, recall, <i>F</i>1 score, and vehicle detection accuracy of 0.94, 0.98, 0.96 and 0.95, respectively. Our proposed work surpasses all evaluation metrics compared to state-of-the-art methodologies.</p>","PeriodicalId":46211,"journal":{"name":"CAAI Transactions on Intelligence Technology","volume":"9 4","pages":"932-947"},"PeriodicalIF":8.4000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12309","citationCount":"0","resultStr":"{\"title\":\"Vision based intelligent traffic light management system using Faster R-CNN\",\"authors\":\"Syed Konain Abbas, Muhammad Usman Ghani Khan, Jia Zhu, Raheem Sarwar, Naif R. Aljohani, Ibrahim A. Hameed, Muhammad Umair Hassan\",\"doi\":\"10.1049/cit2.12309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Transportation systems primarily depend on vehicular flow on roads. Developed countries have shifted towards automated signal control, which manages and updates signal synchronisation automatically. In contrast, traffic in underdeveloped countries is mainly governed by manual traffic light systems. These existing manual systems lead to numerous issues, wasting substantial resources such as time, energy, and fuel, as they cannot make real-time decisions. In this work, we propose an algorithm to determine traffic signal durations based on real-time vehicle density, obtained from live closed circuit television camera feeds adjacent to traffic signals. The algorithm automates the traffic light system, making decisions based on vehicle density and employing Faster R-CNN for vehicle detection. Additionally, we have created a local dataset from live streams of Punjab Safe City cameras in collaboration with the local police authority. The proposed algorithm achieves a class accuracy of 96.6% and a vehicle detection accuracy of 95.7%. Across both day and night modes, our proposed method maintains an average precision, recall, <i>F</i>1 score, and vehicle detection accuracy of 0.94, 0.98, 0.96 and 0.95, respectively. Our proposed work surpasses all evaluation metrics compared to state-of-the-art methodologies.</p>\",\"PeriodicalId\":46211,\"journal\":{\"name\":\"CAAI Transactions on Intelligence Technology\",\"volume\":\"9 4\",\"pages\":\"932-947\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12309\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAAI Transactions on Intelligence Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12309\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI Transactions on Intelligence Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12309","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Vision based intelligent traffic light management system using Faster R-CNN
Transportation systems primarily depend on vehicular flow on roads. Developed countries have shifted towards automated signal control, which manages and updates signal synchronisation automatically. In contrast, traffic in underdeveloped countries is mainly governed by manual traffic light systems. These existing manual systems lead to numerous issues, wasting substantial resources such as time, energy, and fuel, as they cannot make real-time decisions. In this work, we propose an algorithm to determine traffic signal durations based on real-time vehicle density, obtained from live closed circuit television camera feeds adjacent to traffic signals. The algorithm automates the traffic light system, making decisions based on vehicle density and employing Faster R-CNN for vehicle detection. Additionally, we have created a local dataset from live streams of Punjab Safe City cameras in collaboration with the local police authority. The proposed algorithm achieves a class accuracy of 96.6% and a vehicle detection accuracy of 95.7%. Across both day and night modes, our proposed method maintains an average precision, recall, F1 score, and vehicle detection accuracy of 0.94, 0.98, 0.96 and 0.95, respectively. Our proposed work surpasses all evaluation metrics compared to state-of-the-art methodologies.
期刊介绍:
CAAI Transactions on Intelligence Technology is a leading venue for original research on the theoretical and experimental aspects of artificial intelligence technology. We are a fully open access journal co-published by the Institution of Engineering and Technology (IET) and the Chinese Association for Artificial Intelligence (CAAI) providing research which is openly accessible to read and share worldwide.