吲哚-3-羧酸通过诱导结直肠癌细胞衰老增强多柔比星的抗癌效力

Yao Zhou, Yi Tang, Qingping Luo, Yuhang Hu, Wei Peng
{"title":"吲哚-3-羧酸通过诱导结直肠癌细胞衰老增强多柔比星的抗癌效力","authors":"Yao Zhou, Yi Tang, Qingping Luo, Yuhang Hu, Wei Peng","doi":"10.32383/appdr/178491","DOIUrl":null,"url":null,"abstract":"Background: Colorectal cancer (CRC) is the most common gastrointestinal malignancy. Doxorubicin (DOX) is a widely utilized chemotherapy drug, but its efficacy is limited due to dose-dependent toxicity. Here, we aim to explore the effect of indole-3-carboxylic acid on DOX-induced senescence of CRC.\nMethods: Healthy adult rats and aged rats were compared in terms of their metabolites and functions through non-targeted metabolomics. LS180 cells were treated with DOX to induce senescence, followed by indole-3-carboxylic acid. The effects of this combination were evaluated in xenograft tumor mice. Cell viability, proliferation, and cell cycle were assessed with the Cell Counting Kit-8, colony formation assays, and flow cytometry. The levels of senescence-associated heterochromatin foci (SAHF) were detected by immunofluorescence. Senescence-associated-beta-galactosidase (SA-β-gal) expression was assessed by SA-β-gal staining and immunohistochemistry. Western blot was used to detect the expression of p21 and p53.\nResults: Compared to healthy adult rats, the serum metabolome in aging rats was altered, and the abundance of indole metabolites, including indoxyl sulfate, indole-3-carboxylic acid, and indole-5-carboxylic acid, was decreased significantly. In LS180 cells, indole-3-carboxylic acid amplified DOX-induced cell senescence, inhibiting cell proliferation and promoting cell cycle arrest. It also boosted DOX-triggered upregulation of SA-β-gal, SAHF, and p21. In nude mice, indole-3-carboxylic acid increased the inhibitory effect of DOX on xenograft tumors.\nConclusion: Indole-3-carboxylic acid enhances the cellular senescence and growth arrest induced by DOX, suppressing mouse tumor growth. These findings suggest that a combined treatment of indole-3-carboxylic acid and DOX could be an effective strategy for CRC treatment.","PeriodicalId":7135,"journal":{"name":"Acta Poloniae Pharmaceutica - Drug Research","volume":"71 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indole-3-Carboxylic Acid Enhanced Anti-cancer Potency of Doxorubicin via Induction of Cellular Senescence in Colorectal Cells\",\"authors\":\"Yao Zhou, Yi Tang, Qingping Luo, Yuhang Hu, Wei Peng\",\"doi\":\"10.32383/appdr/178491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Colorectal cancer (CRC) is the most common gastrointestinal malignancy. Doxorubicin (DOX) is a widely utilized chemotherapy drug, but its efficacy is limited due to dose-dependent toxicity. Here, we aim to explore the effect of indole-3-carboxylic acid on DOX-induced senescence of CRC.\\nMethods: Healthy adult rats and aged rats were compared in terms of their metabolites and functions through non-targeted metabolomics. LS180 cells were treated with DOX to induce senescence, followed by indole-3-carboxylic acid. The effects of this combination were evaluated in xenograft tumor mice. Cell viability, proliferation, and cell cycle were assessed with the Cell Counting Kit-8, colony formation assays, and flow cytometry. The levels of senescence-associated heterochromatin foci (SAHF) were detected by immunofluorescence. Senescence-associated-beta-galactosidase (SA-β-gal) expression was assessed by SA-β-gal staining and immunohistochemistry. Western blot was used to detect the expression of p21 and p53.\\nResults: Compared to healthy adult rats, the serum metabolome in aging rats was altered, and the abundance of indole metabolites, including indoxyl sulfate, indole-3-carboxylic acid, and indole-5-carboxylic acid, was decreased significantly. In LS180 cells, indole-3-carboxylic acid amplified DOX-induced cell senescence, inhibiting cell proliferation and promoting cell cycle arrest. It also boosted DOX-triggered upregulation of SA-β-gal, SAHF, and p21. In nude mice, indole-3-carboxylic acid increased the inhibitory effect of DOX on xenograft tumors.\\nConclusion: Indole-3-carboxylic acid enhances the cellular senescence and growth arrest induced by DOX, suppressing mouse tumor growth. These findings suggest that a combined treatment of indole-3-carboxylic acid and DOX could be an effective strategy for CRC treatment.\",\"PeriodicalId\":7135,\"journal\":{\"name\":\"Acta Poloniae Pharmaceutica - Drug Research\",\"volume\":\"71 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Poloniae Pharmaceutica - Drug Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32383/appdr/178491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Poloniae Pharmaceutica - Drug Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32383/appdr/178491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:大肠癌(CRC)是最常见的胃肠道恶性肿瘤:结直肠癌(CRC)是最常见的胃肠道恶性肿瘤。多柔比星(DOX)是一种广泛使用的化疗药物,但由于剂量依赖性毒性,其疗效有限。方法:通过非靶向代谢组学比较健康成年大鼠和老年大鼠的代谢物和功能。用 DOX 处理 LS180 细胞以诱导衰老,然后再用吲哚-3-羧酸处理。在异种移植肿瘤小鼠体内评估了这种组合的效果。细胞活力、增殖和细胞周期通过细胞计数试剂盒-8、集落形成试验和流式细胞术进行评估。通过免疫荧光检测衰老相关异染色质灶(SAHF)的水平。衰老相关-β-半乳糖苷酶(SA-β-gal)的表达通过 SA-β-gal 染色和免疫组织化学进行评估。用 Western 印迹法检测 p21 和 p53 的表达:结果:与健康成年大鼠相比,衰老大鼠的血清代谢组发生了改变,吲哚代谢物(包括硫酸吲哚啉、吲哚-3-羧酸和吲哚-5-羧酸)的丰度显著下降。在LS180细胞中,吲哚-3-羧酸扩大了DOX诱导的细胞衰老,抑制细胞增殖并促进细胞周期停滞。它还促进了 DOX 诱导的 SA-β-gal、SAHF 和 p21 的上调。在裸鼠体内,吲哚-3-羧酸能增强 DOX 对异种移植肿瘤的抑制作用:结论:吲哚-3-羧酸能增强 DOX 诱导的细胞衰老和生长停滞,抑制小鼠肿瘤的生长。这些发现表明,吲哚-3-羧酸和 DOX 的联合治疗可能是治疗 CRC 的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Indole-3-Carboxylic Acid Enhanced Anti-cancer Potency of Doxorubicin via Induction of Cellular Senescence in Colorectal Cells
Background: Colorectal cancer (CRC) is the most common gastrointestinal malignancy. Doxorubicin (DOX) is a widely utilized chemotherapy drug, but its efficacy is limited due to dose-dependent toxicity. Here, we aim to explore the effect of indole-3-carboxylic acid on DOX-induced senescence of CRC. Methods: Healthy adult rats and aged rats were compared in terms of their metabolites and functions through non-targeted metabolomics. LS180 cells were treated with DOX to induce senescence, followed by indole-3-carboxylic acid. The effects of this combination were evaluated in xenograft tumor mice. Cell viability, proliferation, and cell cycle were assessed with the Cell Counting Kit-8, colony formation assays, and flow cytometry. The levels of senescence-associated heterochromatin foci (SAHF) were detected by immunofluorescence. Senescence-associated-beta-galactosidase (SA-β-gal) expression was assessed by SA-β-gal staining and immunohistochemistry. Western blot was used to detect the expression of p21 and p53. Results: Compared to healthy adult rats, the serum metabolome in aging rats was altered, and the abundance of indole metabolites, including indoxyl sulfate, indole-3-carboxylic acid, and indole-5-carboxylic acid, was decreased significantly. In LS180 cells, indole-3-carboxylic acid amplified DOX-induced cell senescence, inhibiting cell proliferation and promoting cell cycle arrest. It also boosted DOX-triggered upregulation of SA-β-gal, SAHF, and p21. In nude mice, indole-3-carboxylic acid increased the inhibitory effect of DOX on xenograft tumors. Conclusion: Indole-3-carboxylic acid enhances the cellular senescence and growth arrest induced by DOX, suppressing mouse tumor growth. These findings suggest that a combined treatment of indole-3-carboxylic acid and DOX could be an effective strategy for CRC treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Role of L-, N- and T-type Calcium Channels in Achieving Maximum Analgesic and Minimum Toxic Effect of Tramadol Validation of Novel High-Performance Liquid Chromatography Method for Meropenem Quantification in Plasma Development of Method for Determining Topiramate in Various Biological Matrices (Plasma, Saliva, Hair) and Its Application in Clinical Practice Research Progress in the Relationship Between P2X7 and Flavonoids in Cardiovascular Disease Are Polish Hospital Pharmacies Ready for Changes in Drug Distribution?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1