B. Mezzina, H. Goosse, P. Huot, Sylvain Marchi, N. V. van Lipzig
{"title":"2016 年南极海冰面积下降的大气强迫和海洋先决条件的贡献","authors":"B. Mezzina, H. Goosse, P. Huot, Sylvain Marchi, N. V. van Lipzig","doi":"10.1088/2752-5295/ad3a0b","DOIUrl":null,"url":null,"abstract":"\n The 2016 Antarctic sea ice extent (SIE) drop was a rapid decrease that led to persistent low sea ice conditions. The event was triggered by atmospheric anomalies, but the potential preconditioning role of the ocean is unsettled. Here, we use sensitivity experiments with a fully-coupled regional climate model to elucidate the impact of the ocean conditions on the drop and on the persistence of the negative SIE anomalies during 2017. In particular, we re-initialize the model in January 2016 using different ocean and sea ice conditions, keeping lateral boundary forcings in the atmosphere and ocean unchanged. We find that the state of the Southern Ocean in early 2016 does not determine whether the drop occurs or not, but indeed has an impact on its amplitude and regional characteristics. Our results also indicate that the ocean initialization affects the sea ice recovery after the drop in the short term (one year), especially in the Weddell sector. The ocean’s influence appears not to be linked to the ocean surface and sea-ice initialization, but rather to the sub-surface conditions (between 50 m and 150 m) and heat exchange fluctuations at the regional scale, while the atmospheric forcing triggering the drop is driven by the large-scale circulation.","PeriodicalId":432508,"journal":{"name":"Environmental Research: Climate","volume":"212 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contributions of atmospheric forcing and ocean preconditioning in the 2016 Antarctic sea ice extent drop\",\"authors\":\"B. Mezzina, H. Goosse, P. Huot, Sylvain Marchi, N. V. van Lipzig\",\"doi\":\"10.1088/2752-5295/ad3a0b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The 2016 Antarctic sea ice extent (SIE) drop was a rapid decrease that led to persistent low sea ice conditions. The event was triggered by atmospheric anomalies, but the potential preconditioning role of the ocean is unsettled. Here, we use sensitivity experiments with a fully-coupled regional climate model to elucidate the impact of the ocean conditions on the drop and on the persistence of the negative SIE anomalies during 2017. In particular, we re-initialize the model in January 2016 using different ocean and sea ice conditions, keeping lateral boundary forcings in the atmosphere and ocean unchanged. We find that the state of the Southern Ocean in early 2016 does not determine whether the drop occurs or not, but indeed has an impact on its amplitude and regional characteristics. Our results also indicate that the ocean initialization affects the sea ice recovery after the drop in the short term (one year), especially in the Weddell sector. The ocean’s influence appears not to be linked to the ocean surface and sea-ice initialization, but rather to the sub-surface conditions (between 50 m and 150 m) and heat exchange fluctuations at the regional scale, while the atmospheric forcing triggering the drop is driven by the large-scale circulation.\",\"PeriodicalId\":432508,\"journal\":{\"name\":\"Environmental Research: Climate\",\"volume\":\"212 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research: Climate\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2752-5295/ad3a0b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research: Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2752-5295/ad3a0b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Contributions of atmospheric forcing and ocean preconditioning in the 2016 Antarctic sea ice extent drop
The 2016 Antarctic sea ice extent (SIE) drop was a rapid decrease that led to persistent low sea ice conditions. The event was triggered by atmospheric anomalies, but the potential preconditioning role of the ocean is unsettled. Here, we use sensitivity experiments with a fully-coupled regional climate model to elucidate the impact of the ocean conditions on the drop and on the persistence of the negative SIE anomalies during 2017. In particular, we re-initialize the model in January 2016 using different ocean and sea ice conditions, keeping lateral boundary forcings in the atmosphere and ocean unchanged. We find that the state of the Southern Ocean in early 2016 does not determine whether the drop occurs or not, but indeed has an impact on its amplitude and regional characteristics. Our results also indicate that the ocean initialization affects the sea ice recovery after the drop in the short term (one year), especially in the Weddell sector. The ocean’s influence appears not to be linked to the ocean surface and sea-ice initialization, but rather to the sub-surface conditions (between 50 m and 150 m) and heat exchange fluctuations at the regional scale, while the atmospheric forcing triggering the drop is driven by the large-scale circulation.