分析法国 23 年的暖季雪灾:气候学以及对天气和环境变化的调查

Lucas Fery, Davide Faranda
{"title":"分析法国 23 年的暖季雪灾:气候学以及对天气和环境变化的调查","authors":"Lucas Fery, Davide Faranda","doi":"10.5194/wcd-5-439-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Derechos are severe convective storms known for producing widespread damaging winds. While less frequent than in the United States of America (USA), derechos also occur in Europe. The notable European event on 18 August 2022 exhibited gusts exceeding 200 km h−1, spanning 1500 km in 12 h. This study presents a first climatology of warm-season derechos in France, identifying 38 events between 2000 and 2022. Typically associated with a southwesterly mid-level circulation, warm-season derechos in France generally initiate in the afternoon and exhibit peak activity in July, with comparable frequencies in June and August. Predominantly impacting the northeast of France, these events exhibit a maximum observed frequency of 0.65 events per year, on average, within a 200 km by 200 km square region. These characteristics are similar to those observed in Germany, with notable differences seen in the USA, where frequencies can attain significantly higher values. The study also examines synoptic and environmental changes linked with analogues of the 500 hPa geopotential height patterns associated with past warm-season derechos, comparing analogues from a relatively distant past (1950–1980) with a recent period (1992–2022). For most events, a notable increase in convective available potential energy (CAPE) is observed, aligning with trends identified in previous studies for southern Europe. However, no consistent change in 0–6 km vertical wind shear is observed in the recent period. These environmental shifts align with higher near-surface temperatures, altered mid-level atmospheric flow patterns and often increased rainfall. The role of anthropogenic climate change in these changes remains uncertain, given potential influences of natural variability factors such as the El Niño–Southern Oscillation (ENSO) or the Atlantic Multidecadal Oscillation (AMO).\n","PeriodicalId":508985,"journal":{"name":"Weather and Climate Dynamics","volume":"182 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysing 23 years of warm-season derechos in France: a climatology and investigation of synoptic and environmental changes\",\"authors\":\"Lucas Fery, Davide Faranda\",\"doi\":\"10.5194/wcd-5-439-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Derechos are severe convective storms known for producing widespread damaging winds. While less frequent than in the United States of America (USA), derechos also occur in Europe. The notable European event on 18 August 2022 exhibited gusts exceeding 200 km h−1, spanning 1500 km in 12 h. This study presents a first climatology of warm-season derechos in France, identifying 38 events between 2000 and 2022. Typically associated with a southwesterly mid-level circulation, warm-season derechos in France generally initiate in the afternoon and exhibit peak activity in July, with comparable frequencies in June and August. Predominantly impacting the northeast of France, these events exhibit a maximum observed frequency of 0.65 events per year, on average, within a 200 km by 200 km square region. These characteristics are similar to those observed in Germany, with notable differences seen in the USA, where frequencies can attain significantly higher values. The study also examines synoptic and environmental changes linked with analogues of the 500 hPa geopotential height patterns associated with past warm-season derechos, comparing analogues from a relatively distant past (1950–1980) with a recent period (1992–2022). For most events, a notable increase in convective available potential energy (CAPE) is observed, aligning with trends identified in previous studies for southern Europe. However, no consistent change in 0–6 km vertical wind shear is observed in the recent period. These environmental shifts align with higher near-surface temperatures, altered mid-level atmospheric flow patterns and often increased rainfall. The role of anthropogenic climate change in these changes remains uncertain, given potential influences of natural variability factors such as the El Niño–Southern Oscillation (ENSO) or the Atlantic Multidecadal Oscillation (AMO).\\n\",\"PeriodicalId\":508985,\"journal\":{\"name\":\"Weather and Climate Dynamics\",\"volume\":\"182 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weather and Climate Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/wcd-5-439-2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Climate Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/wcd-5-439-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要对流风暴是一种以产生大范围破坏性大风而著称的强对流风暴。虽然在欧洲,强对流风暴的发生频率低于美利坚合众国(美国),但在欧洲也有发生。2022 年 8 月 18 日发生的著名欧洲事件的阵风时速超过 200 公里/小时,在 12 小时内跨越 1500 公里。本研究首次展示了法国暖季德雷克风暴的气候学特征,确定了 2000 年至 2022 年间发生的 38 次事件。法国的暖季德雷赫斯通常与西南中层环流有关,一般在下午开始,7 月份达到活动高峰,6 月和 8 月的活动频率相当。这些事件主要影响法国东北部,在 200 平方公里乘 200 平方公里的区域内,观测到的最大频率为平均每年 0.65 次。这些特征与在德国观测到的特征相似,但美国的情况明显不同,美国的频率可能会高得多。该研究还考察了与过去暖季降水相关的 500 hPa 位势高度模式类似物有关的天气和环境变化,比较了相对遥远的过去(1950-1980 年)和近期(1992-2022 年)的类似物。在大多数事件中,观测到对流可用势能(CAPE)明显增加,这与之前南欧研究中确定的趋势一致。然而,在最近一段时期,0-6 公里垂直风切变没有发生持续变化。这些环境变化与较高的近地面温度、改变的中层大气流动模式以及经常增加的降雨量相一致。考虑到厄尔尼诺-南方涛动(ENSO)或大西洋年代涛动(AMO)等自然变异因素的潜在影响,人为气候变化在这些变化中的作用仍不确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysing 23 years of warm-season derechos in France: a climatology and investigation of synoptic and environmental changes
Abstract. Derechos are severe convective storms known for producing widespread damaging winds. While less frequent than in the United States of America (USA), derechos also occur in Europe. The notable European event on 18 August 2022 exhibited gusts exceeding 200 km h−1, spanning 1500 km in 12 h. This study presents a first climatology of warm-season derechos in France, identifying 38 events between 2000 and 2022. Typically associated with a southwesterly mid-level circulation, warm-season derechos in France generally initiate in the afternoon and exhibit peak activity in July, with comparable frequencies in June and August. Predominantly impacting the northeast of France, these events exhibit a maximum observed frequency of 0.65 events per year, on average, within a 200 km by 200 km square region. These characteristics are similar to those observed in Germany, with notable differences seen in the USA, where frequencies can attain significantly higher values. The study also examines synoptic and environmental changes linked with analogues of the 500 hPa geopotential height patterns associated with past warm-season derechos, comparing analogues from a relatively distant past (1950–1980) with a recent period (1992–2022). For most events, a notable increase in convective available potential energy (CAPE) is observed, aligning with trends identified in previous studies for southern Europe. However, no consistent change in 0–6 km vertical wind shear is observed in the recent period. These environmental shifts align with higher near-surface temperatures, altered mid-level atmospheric flow patterns and often increased rainfall. The role of anthropogenic climate change in these changes remains uncertain, given potential influences of natural variability factors such as the El Niño–Southern Oscillation (ENSO) or the Atlantic Multidecadal Oscillation (AMO).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the daytime boundary layer evolution based on Doppler spectrum width from multiple coplanar wind lidars during CROSSINN Understanding winter windstorm predictability over Europe How heating tracers drive self-lofting long-lived stratospheric anticyclones: simple dynamical models Warm conveyor belt characteristics and impacts along the life cycle of extratropical cyclones: case studies and climatological analysis based on ERA5 Quantifying uncertainty in simulations of the West African monsoon with the use of surrogate models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1