Farjam Eshraghian, Najmeh Hafezieh, F. Farivar, Sergio de Cesare
{"title":"软件编程中的人工智能:了解对 GitHub Copilot 的情绪反应","authors":"Farjam Eshraghian, Najmeh Hafezieh, F. Farivar, Sergio de Cesare","doi":"10.1108/itp-01-2023-0084","DOIUrl":null,"url":null,"abstract":"PurposeThe applications of Artificial Intelligence (AI) in various areas of professional and knowledge work are growing. Emotions play an important role in how users incorporate a technology into their work practices. The current study draws on work in the areas of AI-powered technologies adaptation, emotions, and the future of work, to investigate how knowledge workers feel about adopting AI in their work.Design/methodology/approachWe gathered 107,111 tweets about the new AI programmer, GitHub Copilot, launched by GitHub and analysed the data in three stages. First, after cleaning and filtering the data, we applied the topic modelling method to analyse 16,130 tweets posted by 10,301 software programmers to identify the emotions they expressed. Then, we analysed the outcome topics qualitatively to understand the stimulus characteristics driving those emotions. Finally, we analysed a sample of tweets to explore how emotional responses changed over time.FindingsWe found six categories of emotions among software programmers: challenge, achievement, loss, deterrence, scepticism, and apathy. In addition, we found these emotions were driven by four stimulus characteristics: AI development, AI functionality, identity work, and AI engagement. We also examined the change in emotions over time. The results indicate that negative emotions changed to more positive emotions once software programmers redirected their attention to the AI programmer's capabilities and functionalities, and related that to their identity work.Practical implicationsOverall, as organisations start adopting AI-powered technologies in their software development practices, our research offers practical guidance to managers by identifying factors that can change negative emotions to positive emotions.Originality/valueOur study makes a timely contribution to the discussions on AI and the future of work through the lens of emotions. In contrast to nascent discussions on the role of AI in high-skilled jobs that show knowledge workers' general ambivalence towards AI, we find knowledge workers show more positive emotions over time and as they engage more with AI. In addition, this study unveils the role of professional identity in leading to more positive emotions towards AI, as knowledge workers view such technology as a means of expanding their identity rather than as a threat to it.","PeriodicalId":168000,"journal":{"name":"Information Technology & People","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI in software programming: understanding emotional responses to GitHub Copilot\",\"authors\":\"Farjam Eshraghian, Najmeh Hafezieh, F. Farivar, Sergio de Cesare\",\"doi\":\"10.1108/itp-01-2023-0084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThe applications of Artificial Intelligence (AI) in various areas of professional and knowledge work are growing. Emotions play an important role in how users incorporate a technology into their work practices. The current study draws on work in the areas of AI-powered technologies adaptation, emotions, and the future of work, to investigate how knowledge workers feel about adopting AI in their work.Design/methodology/approachWe gathered 107,111 tweets about the new AI programmer, GitHub Copilot, launched by GitHub and analysed the data in three stages. First, after cleaning and filtering the data, we applied the topic modelling method to analyse 16,130 tweets posted by 10,301 software programmers to identify the emotions they expressed. Then, we analysed the outcome topics qualitatively to understand the stimulus characteristics driving those emotions. Finally, we analysed a sample of tweets to explore how emotional responses changed over time.FindingsWe found six categories of emotions among software programmers: challenge, achievement, loss, deterrence, scepticism, and apathy. In addition, we found these emotions were driven by four stimulus characteristics: AI development, AI functionality, identity work, and AI engagement. We also examined the change in emotions over time. The results indicate that negative emotions changed to more positive emotions once software programmers redirected their attention to the AI programmer's capabilities and functionalities, and related that to their identity work.Practical implicationsOverall, as organisations start adopting AI-powered technologies in their software development practices, our research offers practical guidance to managers by identifying factors that can change negative emotions to positive emotions.Originality/valueOur study makes a timely contribution to the discussions on AI and the future of work through the lens of emotions. In contrast to nascent discussions on the role of AI in high-skilled jobs that show knowledge workers' general ambivalence towards AI, we find knowledge workers show more positive emotions over time and as they engage more with AI. In addition, this study unveils the role of professional identity in leading to more positive emotions towards AI, as knowledge workers view such technology as a means of expanding their identity rather than as a threat to it.\",\"PeriodicalId\":168000,\"journal\":{\"name\":\"Information Technology & People\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Technology & People\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/itp-01-2023-0084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Technology & People","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/itp-01-2023-0084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
AI in software programming: understanding emotional responses to GitHub Copilot
PurposeThe applications of Artificial Intelligence (AI) in various areas of professional and knowledge work are growing. Emotions play an important role in how users incorporate a technology into their work practices. The current study draws on work in the areas of AI-powered technologies adaptation, emotions, and the future of work, to investigate how knowledge workers feel about adopting AI in their work.Design/methodology/approachWe gathered 107,111 tweets about the new AI programmer, GitHub Copilot, launched by GitHub and analysed the data in three stages. First, after cleaning and filtering the data, we applied the topic modelling method to analyse 16,130 tweets posted by 10,301 software programmers to identify the emotions they expressed. Then, we analysed the outcome topics qualitatively to understand the stimulus characteristics driving those emotions. Finally, we analysed a sample of tweets to explore how emotional responses changed over time.FindingsWe found six categories of emotions among software programmers: challenge, achievement, loss, deterrence, scepticism, and apathy. In addition, we found these emotions were driven by four stimulus characteristics: AI development, AI functionality, identity work, and AI engagement. We also examined the change in emotions over time. The results indicate that negative emotions changed to more positive emotions once software programmers redirected their attention to the AI programmer's capabilities and functionalities, and related that to their identity work.Practical implicationsOverall, as organisations start adopting AI-powered technologies in their software development practices, our research offers practical guidance to managers by identifying factors that can change negative emotions to positive emotions.Originality/valueOur study makes a timely contribution to the discussions on AI and the future of work through the lens of emotions. In contrast to nascent discussions on the role of AI in high-skilled jobs that show knowledge workers' general ambivalence towards AI, we find knowledge workers show more positive emotions over time and as they engage more with AI. In addition, this study unveils the role of professional identity in leading to more positive emotions towards AI, as knowledge workers view such technology as a means of expanding their identity rather than as a threat to it.