整合卷积神经网络以改进软件工程:协作和非平衡数据视角

Mohammadreza Nehzati
{"title":"整合卷积神经网络以改进软件工程:协作和非平衡数据视角","authors":"Mohammadreza Nehzati","doi":"10.1016/j.memori.2024.100106","DOIUrl":null,"url":null,"abstract":"<div><p>This study pioneers the tailored application of Convolutional Neural Networks (CNNs) for addressing the challenge of unbalanced data in software engineering, a relatively unexplored domain for CNN utilization. Unlike conventional methods, our framework demonstrates a significant precision uplift of up to 15% in software classification tasks, specifically enhancing minority class sample accuracy. This research not only delineates a novel CNN-based approach that outperforms traditional data balancing techniques but also underscores the strategic integration of AI to bolster software engineering processes. By pinpointing the ethical implications, our findings advocate for a conscientious adoption of AI, ensuring software development advances equitably and efficiently.</p></div>","PeriodicalId":100915,"journal":{"name":"Memories - Materials, Devices, Circuits and Systems","volume":"8 ","pages":"Article 100106"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773064624000082/pdfft?md5=42835d178c5411492a9767c94338cbaa&pid=1-s2.0-S2773064624000082-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Integrating convolutional neural networks for improved software engineering: A Collaborative and unbalanced data Perspective\",\"authors\":\"Mohammadreza Nehzati\",\"doi\":\"10.1016/j.memori.2024.100106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study pioneers the tailored application of Convolutional Neural Networks (CNNs) for addressing the challenge of unbalanced data in software engineering, a relatively unexplored domain for CNN utilization. Unlike conventional methods, our framework demonstrates a significant precision uplift of up to 15% in software classification tasks, specifically enhancing minority class sample accuracy. This research not only delineates a novel CNN-based approach that outperforms traditional data balancing techniques but also underscores the strategic integration of AI to bolster software engineering processes. By pinpointing the ethical implications, our findings advocate for a conscientious adoption of AI, ensuring software development advances equitably and efficiently.</p></div>\",\"PeriodicalId\":100915,\"journal\":{\"name\":\"Memories - Materials, Devices, Circuits and Systems\",\"volume\":\"8 \",\"pages\":\"Article 100106\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2773064624000082/pdfft?md5=42835d178c5411492a9767c94338cbaa&pid=1-s2.0-S2773064624000082-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memories - Materials, Devices, Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773064624000082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memories - Materials, Devices, Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773064624000082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究开创了卷积神经网络(CNN)的定制应用,以应对软件工程中不平衡数据带来的挑战,这是 CNN 应用领域中一个相对尚未开发的领域。与传统方法不同,我们的框架在软件分类任务中展示了高达 15% 的显著精度提升,特别是提高了少数类别样本的精度。这项研究不仅描述了一种基于 CNN 的新方法,其性能优于传统的数据平衡技术,而且还强调了将人工智能战略性地整合到软件工程流程中的重要性。我们的研究结果指出了人工智能的伦理意义,倡导认真采用人工智能,确保软件开发公平、高效地向前发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating convolutional neural networks for improved software engineering: A Collaborative and unbalanced data Perspective

This study pioneers the tailored application of Convolutional Neural Networks (CNNs) for addressing the challenge of unbalanced data in software engineering, a relatively unexplored domain for CNN utilization. Unlike conventional methods, our framework demonstrates a significant precision uplift of up to 15% in software classification tasks, specifically enhancing minority class sample accuracy. This research not only delineates a novel CNN-based approach that outperforms traditional data balancing techniques but also underscores the strategic integration of AI to bolster software engineering processes. By pinpointing the ethical implications, our findings advocate for a conscientious adoption of AI, ensuring software development advances equitably and efficiently.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of an analog topology for a multi-layer neuronal network A graphene-based toxic detection approach Optimization of deep learning algorithms for large digital data processing using evolutionary neural networks The application of organic materials used in IC advanced packaging:A review Design and evaluation of clock-gating-based approximate multiplier for error-tolerant applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1