氟化分子金刚石改良聚合物电解质实现了全固态锂金属电池的稳定循环和高容量

IF 8.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materiomics Pub Date : 2024-04-21 DOI:10.1016/j.jmat.2024.03.009
{"title":"氟化分子金刚石改良聚合物电解质实现了全固态锂金属电池的稳定循环和高容量","authors":"","doi":"10.1016/j.jmat.2024.03.009","DOIUrl":null,"url":null,"abstract":"<div><p>The interfacial incompatibility of the poly (ethylene oxide)-based electrolytes hinder the longevity and further practice of all-solid-state batteries. Herein, we present a productive additive 1-Fluoroadamantane facilitating to the distinct performance of the poly (ethylene oxide)-based electrolytes. Attributed to the strong molecular interaction, the coordination of the Li<sup>+</sup>-EO is reduced and the ‘bonding effect’ of anion is improved. Thus, the Li <sup>+</sup> conductivity is promoted and the electrochemical window is widened. The diamond building block C<sub>10</sub>H<sub>15</sub><sup>−</sup> strengthens the stability of the solid polymer electrolytes. Importantly, the 1-Fluoroadamantane mediates the generation of LiF in the interfaces, which fosters the interfacial stability, contributing to the long-term cycling. Hence, the symmetric cell (Li/Li) exhibits a long-term lithium plating/stripping for over 2,400 h. The 4.3 V LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub>/Li all-solid-state battery with the 1-Fluoroadamantane-poly (ethylene oxide) improved electrolyte delivers 600 times, with an impressive capacity retention of 84%. Also, the cell presents high capacity of 210 mA·h/g, and 170 mA·h/g at 0.1 C and 0.3 C respectively, rivalling the liquid electrolytes.</p></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 2","pages":"Article 100864"},"PeriodicalIF":8.4000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352847824000698/pdfft?md5=1833c8043b2f2a046ace4392b78c5f77&pid=1-s2.0-S2352847824000698-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fluorinated molecular diamond improved polymer electrolytes enable stable cycling with high capacity of all-solid-state lithium-metal batteries\",\"authors\":\"\",\"doi\":\"10.1016/j.jmat.2024.03.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The interfacial incompatibility of the poly (ethylene oxide)-based electrolytes hinder the longevity and further practice of all-solid-state batteries. Herein, we present a productive additive 1-Fluoroadamantane facilitating to the distinct performance of the poly (ethylene oxide)-based electrolytes. Attributed to the strong molecular interaction, the coordination of the Li<sup>+</sup>-EO is reduced and the ‘bonding effect’ of anion is improved. Thus, the Li <sup>+</sup> conductivity is promoted and the electrochemical window is widened. The diamond building block C<sub>10</sub>H<sub>15</sub><sup>−</sup> strengthens the stability of the solid polymer electrolytes. Importantly, the 1-Fluoroadamantane mediates the generation of LiF in the interfaces, which fosters the interfacial stability, contributing to the long-term cycling. Hence, the symmetric cell (Li/Li) exhibits a long-term lithium plating/stripping for over 2,400 h. The 4.3 V LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub>/Li all-solid-state battery with the 1-Fluoroadamantane-poly (ethylene oxide) improved electrolyte delivers 600 times, with an impressive capacity retention of 84%. Also, the cell presents high capacity of 210 mA·h/g, and 170 mA·h/g at 0.1 C and 0.3 C respectively, rivalling the liquid electrolytes.</p></div>\",\"PeriodicalId\":16173,\"journal\":{\"name\":\"Journal of Materiomics\",\"volume\":\"11 2\",\"pages\":\"Article 100864\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352847824000698/pdfft?md5=1833c8043b2f2a046ace4392b78c5f77&pid=1-s2.0-S2352847824000698-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materiomics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352847824000698\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352847824000698","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

聚(环氧乙烷)基电解质的界面不相容性阻碍了全固态电池的使用寿命和进一步应用。在此,我们提出了一种生产性添加剂 1-氟金刚烷,它有助于提高聚(环氧乙烷)基电解质的性能。由于强烈的分子相互作用,Li+-环氧乙烷的配位减少,阴离子的 "键合效应 "得到改善。因此,Li+ 的导电性得到了提高,电化学窗口也得到了拓宽。金刚石结构单元 C10H15- 增强了固体聚合物电解质的稳定性。重要的是,1-氟金刚烷在界面中介导生成 LiF,从而提高了界面稳定性,有助于长期循环。采用 1-氟金刚烷-聚(环氧乙烷)改良电解质的 4.3 V LiNi0.8Mn0.1Co0.1O2/Li 全固态电池可实现 600 次循环,容量保持率高达 84%。此外,该电池在 0.1 摄氏度和 0.3 摄氏度条件下的高容量分别为 210 mA-h/g 和 170 mA-h/g,可与液态电解质相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fluorinated molecular diamond improved polymer electrolytes enable stable cycling with high capacity of all-solid-state lithium-metal batteries

The interfacial incompatibility of the poly (ethylene oxide)-based electrolytes hinder the longevity and further practice of all-solid-state batteries. Herein, we present a productive additive 1-Fluoroadamantane facilitating to the distinct performance of the poly (ethylene oxide)-based electrolytes. Attributed to the strong molecular interaction, the coordination of the Li+-EO is reduced and the ‘bonding effect’ of anion is improved. Thus, the Li + conductivity is promoted and the electrochemical window is widened. The diamond building block C10H15 strengthens the stability of the solid polymer electrolytes. Importantly, the 1-Fluoroadamantane mediates the generation of LiF in the interfaces, which fosters the interfacial stability, contributing to the long-term cycling. Hence, the symmetric cell (Li/Li) exhibits a long-term lithium plating/stripping for over 2,400 h. The 4.3 V LiNi0.8Mn0.1Co0.1O2/Li all-solid-state battery with the 1-Fluoroadamantane-poly (ethylene oxide) improved electrolyte delivers 600 times, with an impressive capacity retention of 84%. Also, the cell presents high capacity of 210 mA·h/g, and 170 mA·h/g at 0.1 C and 0.3 C respectively, rivalling the liquid electrolytes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materiomics
Journal of Materiomics Materials Science-Metals and Alloys
CiteScore
14.30
自引率
6.40%
发文量
331
审稿时长
37 days
期刊介绍: The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.
期刊最新文献
Convenient synthesis of hollow tubular In2O3/PDA S-scheme inorganic/organic heterojunction photocatalyst for H2O2 production and its mechanism Synergistic effects lead to high thermoelectric performance of iodine doped pseudo-binary layered GeSb2Te4 Surface oxygen vacancies in amorphous Fe2O3 tailored nonlinear optical properties for ultrafast photonics High temperature magnetoelectric effect in Fe2TeO6 F− surface modified ZnO for enhanced photocatalytic H2O2 production and its fs-TAS investigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1