Linglong Zhou, Guoxin Wu, Yunbo Zuo, Xuanyu Chen, Hongle Hu
{"title":"基于视觉的 3D 重建方法综述","authors":"Linglong Zhou, Guoxin Wu, Yunbo Zuo, Xuanyu Chen, Hongle Hu","doi":"10.3390/s24072314","DOIUrl":null,"url":null,"abstract":"With the rapid development of 3D reconstruction, especially the emergence of algorithms such as NeRF and 3DGS, 3D reconstruction has become a popular research topic in recent years. 3D reconstruction technology provides crucial support for training extensive computer vision models and advancing the development of general artificial intelligence. With the development of deep learning and GPU technology, the demand for high-precision and high-efficiency 3D reconstruction information is increasing, especially in the fields of unmanned systems, human-computer interaction, virtual reality, and medicine. The rapid development of 3D reconstruction is becoming inevitable. This survey categorizes the various methods and technologies used in 3D reconstruction. It explores and classifies them based on three aspects: traditional static, dynamic, and machine learning. Furthermore, it compares and discusses these methods. At the end of the survey, which includes a detailed analysis of the trends and challenges in 3D reconstruction development, we aim to provide a comprehensive introduction for individuals who are currently engaged in or planning to conduct research on 3D reconstruction. Our goal is to help them gain a comprehensive understanding of the relevant knowledge related to 3D reconstruction.","PeriodicalId":221960,"journal":{"name":"Sensors (Basel, Switzerland)","volume":"32 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comprehensive Review of Vision-Based 3D Reconstruction Methods\",\"authors\":\"Linglong Zhou, Guoxin Wu, Yunbo Zuo, Xuanyu Chen, Hongle Hu\",\"doi\":\"10.3390/s24072314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of 3D reconstruction, especially the emergence of algorithms such as NeRF and 3DGS, 3D reconstruction has become a popular research topic in recent years. 3D reconstruction technology provides crucial support for training extensive computer vision models and advancing the development of general artificial intelligence. With the development of deep learning and GPU technology, the demand for high-precision and high-efficiency 3D reconstruction information is increasing, especially in the fields of unmanned systems, human-computer interaction, virtual reality, and medicine. The rapid development of 3D reconstruction is becoming inevitable. This survey categorizes the various methods and technologies used in 3D reconstruction. It explores and classifies them based on three aspects: traditional static, dynamic, and machine learning. Furthermore, it compares and discusses these methods. At the end of the survey, which includes a detailed analysis of the trends and challenges in 3D reconstruction development, we aim to provide a comprehensive introduction for individuals who are currently engaged in or planning to conduct research on 3D reconstruction. Our goal is to help them gain a comprehensive understanding of the relevant knowledge related to 3D reconstruction.\",\"PeriodicalId\":221960,\"journal\":{\"name\":\"Sensors (Basel, Switzerland)\",\"volume\":\"32 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors (Basel, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/s24072314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/s24072314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Comprehensive Review of Vision-Based 3D Reconstruction Methods
With the rapid development of 3D reconstruction, especially the emergence of algorithms such as NeRF and 3DGS, 3D reconstruction has become a popular research topic in recent years. 3D reconstruction technology provides crucial support for training extensive computer vision models and advancing the development of general artificial intelligence. With the development of deep learning and GPU technology, the demand for high-precision and high-efficiency 3D reconstruction information is increasing, especially in the fields of unmanned systems, human-computer interaction, virtual reality, and medicine. The rapid development of 3D reconstruction is becoming inevitable. This survey categorizes the various methods and technologies used in 3D reconstruction. It explores and classifies them based on three aspects: traditional static, dynamic, and machine learning. Furthermore, it compares and discusses these methods. At the end of the survey, which includes a detailed analysis of the trends and challenges in 3D reconstruction development, we aim to provide a comprehensive introduction for individuals who are currently engaged in or planning to conduct research on 3D reconstruction. Our goal is to help them gain a comprehensive understanding of the relevant knowledge related to 3D reconstruction.