Renske Hoevers , Nils Broothaerts , Ellen Jennen , Ward Swinnen , Gert Verstraeten
{"title":"评估沉积学、地球化学和生物代用指标对重建洪泛区古水文的适用性","authors":"Renske Hoevers , Nils Broothaerts , Ellen Jennen , Ward Swinnen , Gert Verstraeten","doi":"10.1016/j.quaint.2024.03.005","DOIUrl":null,"url":null,"abstract":"<div><p>Fundamental insight into the long-term ‘geoecohydrological’ dynamics of rivers and floodplains is required for their sustainable management. To study these dynamics, a multi-proxy approach is essential. While suitable proxies are available for reconstructing floodplain geomorphology and past vegetation, the suitability of the available proxies for past hydrology to reconstruct floodplain wetness has not yet been evaluated. In this study, we apply a multi-proxy analysis combining testate amoebae and several geochemical proxies for decomposition (humification, carbon and nitrogen stable isotopes), in comparison to sedimentological (stratigraphy, loss on ignition) and palaeobotanical records, to obtain independent hydrological reconstructions of alluvial floodplains in contrasting environmental settings to explore the suitability of the available proxies for past hydrology to reconstruct floodplain wetness.</p><p>This study concludes that testate amoebae cannot provide a continuous and reliable hydrological reconstruction, as they are insufficiently preserved in alluvial peat deposits. In addition, mineral particles within the tests size range hamper the analysis in mineral-dominated sediment units. As organic matter decomposition is low when water tables are high and vice versa, we expected the decomposition proxies to reflect the hydrological conditions. While the amount of humic acids appears to depend mainly on the substrate rather than the decomposition of the organic matter in it, the analyses of carbon and nitrogen stable isotopes provide promising results, for both peat and non-peat deposits.</p></div>","PeriodicalId":49644,"journal":{"name":"Quaternary International","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the suitability of sedimentological, geochemical, and biological proxies for reconstructing floodplain palaeohydrology\",\"authors\":\"Renske Hoevers , Nils Broothaerts , Ellen Jennen , Ward Swinnen , Gert Verstraeten\",\"doi\":\"10.1016/j.quaint.2024.03.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fundamental insight into the long-term ‘geoecohydrological’ dynamics of rivers and floodplains is required for their sustainable management. To study these dynamics, a multi-proxy approach is essential. While suitable proxies are available for reconstructing floodplain geomorphology and past vegetation, the suitability of the available proxies for past hydrology to reconstruct floodplain wetness has not yet been evaluated. In this study, we apply a multi-proxy analysis combining testate amoebae and several geochemical proxies for decomposition (humification, carbon and nitrogen stable isotopes), in comparison to sedimentological (stratigraphy, loss on ignition) and palaeobotanical records, to obtain independent hydrological reconstructions of alluvial floodplains in contrasting environmental settings to explore the suitability of the available proxies for past hydrology to reconstruct floodplain wetness.</p><p>This study concludes that testate amoebae cannot provide a continuous and reliable hydrological reconstruction, as they are insufficiently preserved in alluvial peat deposits. In addition, mineral particles within the tests size range hamper the analysis in mineral-dominated sediment units. As organic matter decomposition is low when water tables are high and vice versa, we expected the decomposition proxies to reflect the hydrological conditions. While the amount of humic acids appears to depend mainly on the substrate rather than the decomposition of the organic matter in it, the analyses of carbon and nitrogen stable isotopes provide promising results, for both peat and non-peat deposits.</p></div>\",\"PeriodicalId\":49644,\"journal\":{\"name\":\"Quaternary International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quaternary International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1040618224001034\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quaternary International","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1040618224001034","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Evaluating the suitability of sedimentological, geochemical, and biological proxies for reconstructing floodplain palaeohydrology
Fundamental insight into the long-term ‘geoecohydrological’ dynamics of rivers and floodplains is required for their sustainable management. To study these dynamics, a multi-proxy approach is essential. While suitable proxies are available for reconstructing floodplain geomorphology and past vegetation, the suitability of the available proxies for past hydrology to reconstruct floodplain wetness has not yet been evaluated. In this study, we apply a multi-proxy analysis combining testate amoebae and several geochemical proxies for decomposition (humification, carbon and nitrogen stable isotopes), in comparison to sedimentological (stratigraphy, loss on ignition) and palaeobotanical records, to obtain independent hydrological reconstructions of alluvial floodplains in contrasting environmental settings to explore the suitability of the available proxies for past hydrology to reconstruct floodplain wetness.
This study concludes that testate amoebae cannot provide a continuous and reliable hydrological reconstruction, as they are insufficiently preserved in alluvial peat deposits. In addition, mineral particles within the tests size range hamper the analysis in mineral-dominated sediment units. As organic matter decomposition is low when water tables are high and vice versa, we expected the decomposition proxies to reflect the hydrological conditions. While the amount of humic acids appears to depend mainly on the substrate rather than the decomposition of the organic matter in it, the analyses of carbon and nitrogen stable isotopes provide promising results, for both peat and non-peat deposits.
期刊介绍:
Quaternary International is the official journal of the International Union for Quaternary Research. The objectives are to publish a high quality scientific journal under the auspices of the premier Quaternary association that reflects the interdisciplinary nature of INQUA and records recent advances in Quaternary science that appeal to a wide audience.
This series will encompass all the full spectrum of the physical and natural sciences that are commonly employed in solving Quaternary problems. The policy is to publish peer refereed collected research papers from symposia, workshops and meetings sponsored by INQUA. In addition, other organizations may request publication of their collected works pertaining to the Quaternary.