{"title":"防止由 LLM 驱动的智能聊天机器人的生命周期能源和碳足迹大幅增加","authors":"","doi":"10.1016/j.eng.2024.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>Intelligent chatbots powered by large language models (LLMs) have recently been sweeping the world, with potential for a wide variety of industrial applications. Global frontier technology companies are feverishly participating in LLM-powered chatbot design and development, providing several alternatives beyond the famous ChatGPT. However, training, fine-tuning, and updating such intelligent chatbots consume substantial amounts of electricity, resulting in significant carbon emissions. The research and development of all intelligent LLMs and software, hardware manufacturing (e.g., graphics processing units and supercomputers), related data/operations management, and material recycling supporting chatbot services are associated with carbon emissions to varying extents. Attention should therefore be paid to the entire life-cycle energy and carbon footprints of LLM-powered intelligent chatbots in both the present and future in order to mitigate their climate change impact. In this work, we clarify and highlight the energy consumption and carbon emission implications of eight main phases throughout the life cycle of the development of such intelligent chatbots. Based on a life-cycle and interaction analysis of these phases, we propose a system-level solution with three strategic pathways to optimize the management of this industry and mitigate the related footprints. While anticipating the enormous potential of this advanced technology and its products, we make an appeal for a rethinking of the mitigation pathways and strategies of the life-cycle energy usage and carbon emissions of the LLM-powered intelligent chatbot industry and a reshaping of their energy and environmental implications at this early stage of development.</p></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"40 ","pages":"Pages 202-210"},"PeriodicalIF":10.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095809924002315/pdfft?md5=93e966676d04f1be87c2a962d933c409&pid=1-s2.0-S2095809924002315-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Preventing the Immense Increase in the Life-Cycle Energy and Carbon Footprints of LLM-Powered Intelligent Chatbots\",\"authors\":\"\",\"doi\":\"10.1016/j.eng.2024.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Intelligent chatbots powered by large language models (LLMs) have recently been sweeping the world, with potential for a wide variety of industrial applications. Global frontier technology companies are feverishly participating in LLM-powered chatbot design and development, providing several alternatives beyond the famous ChatGPT. However, training, fine-tuning, and updating such intelligent chatbots consume substantial amounts of electricity, resulting in significant carbon emissions. The research and development of all intelligent LLMs and software, hardware manufacturing (e.g., graphics processing units and supercomputers), related data/operations management, and material recycling supporting chatbot services are associated with carbon emissions to varying extents. Attention should therefore be paid to the entire life-cycle energy and carbon footprints of LLM-powered intelligent chatbots in both the present and future in order to mitigate their climate change impact. In this work, we clarify and highlight the energy consumption and carbon emission implications of eight main phases throughout the life cycle of the development of such intelligent chatbots. Based on a life-cycle and interaction analysis of these phases, we propose a system-level solution with three strategic pathways to optimize the management of this industry and mitigate the related footprints. While anticipating the enormous potential of this advanced technology and its products, we make an appeal for a rethinking of the mitigation pathways and strategies of the life-cycle energy usage and carbon emissions of the LLM-powered intelligent chatbot industry and a reshaping of their energy and environmental implications at this early stage of development.</p></div>\",\"PeriodicalId\":11783,\"journal\":{\"name\":\"Engineering\",\"volume\":\"40 \",\"pages\":\"Pages 202-210\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095809924002315/pdfft?md5=93e966676d04f1be87c2a962d933c409&pid=1-s2.0-S2095809924002315-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095809924002315\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924002315","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Preventing the Immense Increase in the Life-Cycle Energy and Carbon Footprints of LLM-Powered Intelligent Chatbots
Intelligent chatbots powered by large language models (LLMs) have recently been sweeping the world, with potential for a wide variety of industrial applications. Global frontier technology companies are feverishly participating in LLM-powered chatbot design and development, providing several alternatives beyond the famous ChatGPT. However, training, fine-tuning, and updating such intelligent chatbots consume substantial amounts of electricity, resulting in significant carbon emissions. The research and development of all intelligent LLMs and software, hardware manufacturing (e.g., graphics processing units and supercomputers), related data/operations management, and material recycling supporting chatbot services are associated with carbon emissions to varying extents. Attention should therefore be paid to the entire life-cycle energy and carbon footprints of LLM-powered intelligent chatbots in both the present and future in order to mitigate their climate change impact. In this work, we clarify and highlight the energy consumption and carbon emission implications of eight main phases throughout the life cycle of the development of such intelligent chatbots. Based on a life-cycle and interaction analysis of these phases, we propose a system-level solution with three strategic pathways to optimize the management of this industry and mitigate the related footprints. While anticipating the enormous potential of this advanced technology and its products, we make an appeal for a rethinking of the mitigation pathways and strategies of the life-cycle energy usage and carbon emissions of the LLM-powered intelligent chatbot industry and a reshaping of their energy and environmental implications at this early stage of development.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.