{"title":"基于 Au/Bi3.2La0.8Ti3O12/ITO 记忆晶粒的人工突触模拟痛觉感受器和脑启发计算","authors":"","doi":"10.1016/j.jmat.2024.03.011","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, memristors have garnered widespread attention as neuromorphic devices that can simulate synaptic behavior, holding promise for future commercial applications in neuromorphic computing. In this paper, we present a memristor with an Au/Bi<sub>3.2</sub>La<sub>0.8</sub>Ti<sub>3</sub>O<sub>12</sub> (BLTO)/ITO structure, demonstrating a switching ratio of nearly 10<sup>3</sup> over a duration of 10<sup>4</sup> s. It successfully simulates a range of synaptic behaviors, including long-term potentiation and depression, paired-pulse facilitation, spike-timing-dependent plasticity, spike-rate-dependent plasticity etc. Interestingly, we also employ it to simulate pain threshold, sensitization, and desensitization behaviors of pain-perceptual nociceptor (PPN). Lastly, by introducing memristor differential pairs (1T1R-1T1R), we train a neural network, effectively simplifying the learning process, reducing training time, and achieving a handwriting digit recognition accuracy of up to 97.19 %. Overall, the proposed device holds immense potential in the field of neuromorphic computing, offering possibilities for the next generation of high-performance neuromorphic computing chips.</p></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"10 6","pages":"Pages 1308-1316"},"PeriodicalIF":8.4000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352847824000716/pdfft?md5=84bfc6d7009c3422aa2d5029822af974&pid=1-s2.0-S2352847824000716-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Artificial synaptic simulating pain-perceptual nociceptor and brain-inspired computing based on Au/Bi3.2La0.8Ti3O12/ITO memristor\",\"authors\":\"\",\"doi\":\"10.1016/j.jmat.2024.03.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, memristors have garnered widespread attention as neuromorphic devices that can simulate synaptic behavior, holding promise for future commercial applications in neuromorphic computing. In this paper, we present a memristor with an Au/Bi<sub>3.2</sub>La<sub>0.8</sub>Ti<sub>3</sub>O<sub>12</sub> (BLTO)/ITO structure, demonstrating a switching ratio of nearly 10<sup>3</sup> over a duration of 10<sup>4</sup> s. It successfully simulates a range of synaptic behaviors, including long-term potentiation and depression, paired-pulse facilitation, spike-timing-dependent plasticity, spike-rate-dependent plasticity etc. Interestingly, we also employ it to simulate pain threshold, sensitization, and desensitization behaviors of pain-perceptual nociceptor (PPN). Lastly, by introducing memristor differential pairs (1T1R-1T1R), we train a neural network, effectively simplifying the learning process, reducing training time, and achieving a handwriting digit recognition accuracy of up to 97.19 %. Overall, the proposed device holds immense potential in the field of neuromorphic computing, offering possibilities for the next generation of high-performance neuromorphic computing chips.</p></div>\",\"PeriodicalId\":16173,\"journal\":{\"name\":\"Journal of Materiomics\",\"volume\":\"10 6\",\"pages\":\"Pages 1308-1316\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352847824000716/pdfft?md5=84bfc6d7009c3422aa2d5029822af974&pid=1-s2.0-S2352847824000716-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materiomics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352847824000716\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352847824000716","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Artificial synaptic simulating pain-perceptual nociceptor and brain-inspired computing based on Au/Bi3.2La0.8Ti3O12/ITO memristor
Recently, memristors have garnered widespread attention as neuromorphic devices that can simulate synaptic behavior, holding promise for future commercial applications in neuromorphic computing. In this paper, we present a memristor with an Au/Bi3.2La0.8Ti3O12 (BLTO)/ITO structure, demonstrating a switching ratio of nearly 103 over a duration of 104 s. It successfully simulates a range of synaptic behaviors, including long-term potentiation and depression, paired-pulse facilitation, spike-timing-dependent plasticity, spike-rate-dependent plasticity etc. Interestingly, we also employ it to simulate pain threshold, sensitization, and desensitization behaviors of pain-perceptual nociceptor (PPN). Lastly, by introducing memristor differential pairs (1T1R-1T1R), we train a neural network, effectively simplifying the learning process, reducing training time, and achieving a handwriting digit recognition accuracy of up to 97.19 %. Overall, the proposed device holds immense potential in the field of neuromorphic computing, offering possibilities for the next generation of high-performance neuromorphic computing chips.
期刊介绍:
The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.